Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (12): 40-47    DOI: 10.11868/j.issn.1001-4381.2021.000286
  镁合金腐蚀与防护专栏 本期目录 | 过刊浏览 | 高级检索 |
元素固溶与析出对镁合金耐蚀性影响的研究进展
蒋诗语, 袁媛(), 陈涛, 谷达冲
重庆大学 材料科学与工程学院, 重庆 400044
Research progress on corrosion resistance of magnesium alloys in aspect of element solid-solution and precipitation
Shi-yu JIANG, Yuan YUAN(), Tao CHEN, Da-chong GU
School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
全文: PDF(751 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

合金元素的固溶与析出改变了镁基体相电位和第二相的种类,从而显著影响镁合金的微电偶腐蚀行为。本文综述了元素固溶与析出对镁合金耐蚀性影响的研究现状,总结了典型合金元素在镁合金中固溶析出的典型第二相,重点阐述了基于热力学和动力学分析常见镁合金系中的固溶和析出行为对镁合金的腐蚀行为的影响,指出了良好的镁合金候选材料应具备的条件,提出了提高镁合金本征耐蚀性的设计方法,未来研究重点应通过调控镁合金中合金元素的种类和数量来降低镁合金腐蚀速率,扩大合金应用范围。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋诗语
袁媛
陈涛
谷达冲
关键词 镁合金固溶第二相耐蚀性    
Abstract

The solid solution and precipitations of alloying elements can change the chemical potential of the primary phase and the species of the second phase, which can significantly affect the micro-galvanic corrosion behaviors of magnesium alloys. The influence of solid solution and precipitation on corrosion resistance of magnesium alloys was reviewed.Based on the thermodynamics and dynamics analysis, the effect of solution and precipitation behavior on corrosion behavior of common magnesium alloys was summarized.The necessary conditions for a good candidate material of magnesium alloy were pointed out, and the design method for improving the intrinsic corrosion resistance of magnesium alloy was proposed.Future research should focus on reducing the corrosion rate of magnesium alloys and expanding the application range of magnesium alloys by regulating the types and quantities of alloying elements in magnesium alloys.

Key wordsMg alloy    solid solution    second phase    corrosion resistance
收稿日期: 2021-03-31      出版日期: 2021-12-20
中图分类号:  TG133+.4  
基金资助:国家自然科学基金资助项目(51971044);国家自然科学基金资助项目(U1910213);重庆市自然科学基金资助项目(cstc2019yszx-jcyjX0004);中央高校基本科研业务费专项资金资助项目(2020CDJDPT001)
通讯作者: 袁媛     E-mail: yuanyuan17@cqu.edu.cn
作者简介: 袁媛(1981-), 女, 研究员, 研究方向为耐蚀镁合金的设计、合金设计与材料性能模拟、镁基储能材料的热动力学行为和离子电池电极的设计, 联系地址: 重庆市沙坪坝区沙正街174号重庆大学材料科学与工程学院(400044), E-mail: yuanyuan17@cqu.edu.cn
引用本文:   
蒋诗语, 袁媛, 陈涛, 谷达冲. 元素固溶与析出对镁合金耐蚀性影响的研究进展[J]. 材料工程, 2021, 49(12): 40-47.
Shi-yu JIANG, Yuan YUAN, Tao CHEN, Da-chong GU. Research progress on corrosion resistance of magnesium alloys in aspect of element solid-solution and precipitation. Journal of Materials Engineering, 2021, 49(12): 40-47.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000286      或      http://jme.biam.ac.cn/CN/Y2021/V49/I12/40
Element Solubility(atom fraction/%) Second phase Reference
Al 11.50 Mg17Al12 [11-12]
Sn 3.36 Mg2Sn [13]
Sr 0.03 Mg17Sr2 [14-15]
Y 3.75 Mg24Y5 [16]
Gd 4.53 Mg5Gd [17]
Ce 0.04 Mg12Ce, Mg17Ce2 [18]
Sc 15.00 Al3Sc [19]
La 0.74 Mg12La [20]
Ca 0.82 Mg2Ca [21]
Nd 0.63 Mg12Nd, Mg41Nd5 [22]
Ag 3.82 Mg4Ag [23]
As 0.12 Mg3As2 [24]
Bi 1.00 Mg3Bi2 [25]
Hg 1.00 Mg3Hg [26]
Li 17.01 Mg11Li [27-28]
Sb 0.10 Mg3Sb2 [29]
Si 0.87 Mg2Si [30]
Zn 2.40 MgxZny [31-32]
Co 0.01 Co2Mg, Mg2Cox [33]
Ge 0.02 Mg2Ge [34]
Er 4.46 Mg95Al3Er2, Mg95Al2Er3 is formed by adding Mg-Al alloy [35]
Mn 2.22 Al8Mn5, Al6Mn, Al4Mn is formed by adding in Mg-Al system [36]
Table 1  典型合金元素在镁合金中的固溶度和典型第二相
1 刘玉项. 合金化对镁电化学腐蚀速率影响的研究进展[J]. 稀有金属材料与工程, 2021, 50 (1): 361- 372.
1 LIU Y X . Research progress in effect of alloying on electrochemical corrosion rates of Mg alloys[J]. Rare Metal Materials and Engineering, 2021, 50 (1): 361- 372.
2 ESMAILY M , SVENSSON J E , FAJARDO S , et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89, 92- 193.
doi: 10.1016/j.pmatsci.2017.04.011
3 KARAKULAK E . A review: past, present and future of grain refining of magnesium castings[J]. Journal of Magnesium and Alloys, 2019, 7 (3): 355- 369.
doi: 10.1016/j.jma.2019.05.001
4 WU L , DING X X , ZHENG Z C , et al. Doublely-doped Mg-Al-Ce-V2O74- LDH composite film on magnesium alloy AZ31 for anticorrosion[J]. Journal of Materials Science & Technology, 2021, 64, 66- 72.
5 CHEN J , WU L , DING X X , et al. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31[J]. Journal of Materials Science & Technology, 2021, 21, 10- 20.
6 WU J J , YUAN Y , YU X W , et al. The high temperature oxidation resistance properties of magnesium alloys alloyed with Gd and Ca[J]. Journal of Materials Science, 2020, 56, 8745- 8761.
7 HU H , NIE X Y , MA Y Y . Corrosion and surface treatment of magnesium alloys[M]. Rijeka: Croatia: IntechOpen, 2014: 68- 108.
8 GUSIEVA K , DAVIES C H J , SCULLY J R , et al. Corrosion of magnesium alloys: the role of alloying[J]. International Materials Reviews, 2015, 60 (3): 169- 194.
doi: 10.1179/1743280414Y.0000000046
9 SONG G , ATRENS A . Recent insights into the mechanism of magnesium corrosion and research suggestions[J]. Advanced Engineering Materials, 2007, 9 (3): 177- 183.
doi: 10.1002/adem.200600221
10 WITTE F , HORT N , VOGT C , et al. Degradable biomaterials based on magnesium corrosion[J]. Current Opinion in Solid State & Materials Science, 2008, 12 (5/6): 63- 72.
11 ABIDIN N , ATRENS A D , MARTIN D , et al. Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank's solution at 37℃[J]. Corrosion Science, 2011, 53 (11): 3542- 3556.
doi: 10.1016/j.corsci.2011.06.030
12 ALVAREZ-LOPEZ M , PEREDA M D , Del VALLE J A , et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids[J]. Acta Biomaterialia, 2010, 6 (5): 1763- 1771.
doi: 10.1016/j.actbio.2009.04.041
13 PARK K C , KIM B H , KIMURA H , et al. Microstructure and corrosion properties of Mg-xSn-5Al-1Zn (x=0, 1, 5 and 9 mass%) alloys[J]. Materials Transactions, 2010, 51 (3): 472- 476.
doi: 10.2320/matertrans.M2009308
14 KIM W C , NAM N D , KIM J G , et al. Effect of strontium on corrosion properties of AZ91 magnesium alloy[J]. Electrochemical and Solid State Letters, 2011, 14 (11): C21- C24.
doi: 10.1149/2.021111esl
15 LI Y C , WEN C , MUSHAHARY D , et al. Mg-Zr-Sr alloys as biodegradable implant materials[J]. Acta Biomaterialia, 2012, 8 (8): 3177- 3188.
doi: 10.1016/j.actbio.2012.04.028
16 SUDHOLZ A D , GUSIEVA K , CHEN X B , et al. Electrochemical behaviour and corrosion of Mg-Y alloys[J]. Corrosion Science, 2011, 53 (6): 2277- 2282.
doi: 10.1016/j.corsci.2011.03.010
17 HORT N , HUANG Y , FECHNER D , et al. Magnesium alloys as implant materials-principles of property design for Mg-RE alloys[J]. Acta Biomaterialia, 2010, 6 (5): 1714- 1725.
doi: 10.1016/j.actbio.2009.09.010
18 GAO H F , TAN H Q , LI J , et al. Synergistic effect of cerium conversion coating and phytic acid conversion coating on AZ31B magnesium alloy[J]. Surface & Coatings Technology, 2012, 212, 32- 36.
19 YAO S J , YI D Q , YANG S , et al. Effect of Sc on microstructures and corrosion properties of AZ91[J]. Materials Science Forum, 2007, 546/549, 139- 142.
20 BIRBILIS N , EASTON M A , SUDHOLZ A D , et al. On the corrosion of binary magnesium-rare earth alloys[J]. Corrosion Science, 2009, 51 (3): 683- 689.
doi: 10.1016/j.corsci.2008.12.012
21 KIM K H , NAM N D , KIM J G , et al. Effect of calcium addition on the corrosion behavior of Mg-5Al alloy[J]. Intermetallics, 2011, 19 (12): 1831- 1838.
doi: 10.1016/j.intermet.2011.07.024
22 WU A R , XIA C Q . Study of the microstructure and mechanical properties of Mg-rare earth alloys[J]. Materials & Design, 2007, 28 (6): 1963- 1967.
23 BEN-HAMU G , ELIEZER D , SHIN K S . Influence of Si, Ca and Ag addition on corrosion behaviour of new wrought Mg-Zn alloys[J]. Materials Science and Technology, 2006, 22 (10): 1213- 1218.
doi: 10.1179/174328406X109203
24 BIRBILIS N , WILLIAMS G , GUSIEVA K , et al. Poisoning the corrosion of magnesium[J]. Electrochemistry Communications, 2013, 34, 295- 298.
doi: 10.1016/j.elecom.2013.07.021
25 ZHOU W , AUNG N N , SUN Y S . Effect of antimony, bismuth and calcium addition on corrosion and electrochemical behaviour of AZ91 magnesium alloy[J]. Corrosion Science, 2009, 51 (2): 403- 408.
doi: 10.1016/j.corsci.2008.11.006
26 YU K , RUI S T , WANG X Y , et al. Texture evolution of extruded AZ31 magnesium alloy sheets[J]. Transactions of Nonferrous Metals Society of China, 2009, 19 (3): 511- 516.
doi: 10.1016/S1003-6326(08)60304-0
27 FROST P D , FINK F W , PRAY H A , et al. Results of some marine-atmosphere corrosion tests on magnesium-lithium alloys[J]. Journal of the Electrochemical Society, 1955, 102 (5): 215- 218.
doi: 10.1149/1.2430032
28 SONG Y W , SHAN D Y , CHEN R S , et al. Corrosion characterization of Mg-8Li alloy in NaCl solution[J]. Corrosion Science, 2009, 51 (5): 1087- 1094.
doi: 10.1016/j.corsci.2009.03.011
29 SRINIVASAN A , NINGSHEN S , MUDALI U K , et al. Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy[J]. Intermetallics, 2007, 15 (12): 1511- 1517.
doi: 10.1016/j.intermet.2007.05.012
30 GUPTA R K , SUKIMAN N L , FLEMING K M , et al. Electrochemical behavior and localized corrosion associated with Mg2Si particles in Al and Mg alloys[J]. ECS Electrochemistry Letters, 2012, 1 (1): C1- C3.
doi: 10.1149/2.002201eel
31 CHUN J S , BYRNE J G . Precipitate strengthening mechanisms in magnesium zinc alloy single crystals[J]. Journal of Materials Science, 1969, 4 (10): 861.
doi: 10.1007/BF00549777
32 CACERES C H , BLAKE A . The strength of concentrated Mg-Zn solid solutions[J]. Physica Status Solidi A, 2002, 194 (1): 147- 158.
doi: 10.1002/1521-396X(200211)194:1<147::AID-PSSA147>3.0.CO;2-L
33 GENG J , GAO X , FANG X Y , et al. Enhanced age-hardening response of Mg-Zn alloys via Co additions[J]. Scripta Materialia, 2011, 64 (6): 506- 509.
doi: 10.1016/j.scriptamat.2010.11.027
34 LIU H B , QI G H , MA Y T , et al. Microstructure and mechanical property of Mg-2.0Ga alloys[J]. Materials Science and Engineering: A, 2009, 526 (1/2): 7- 10.
35 ROSALBINO F , ANGELINI E , De NEGRI S , et al. Electrochemical behaviour assessment of novel Mg-rich Mg-Al-RE alloys (RE=Ce, Er)[J]. Intermetallics, 2006, 14 (12): 1487- 1492.
doi: 10.1016/j.intermet.2006.01.056
36 PARTHIBAN G T , PALANISWAMY N , SIVAN V . Effect of manganese addition on anode characteristics of electrolytic magnesium[J]. Anti-Corrosion Methods and Materials, 2009, 56 (2): 79- 83.
doi: 10.1108/00035590910940069
37 褚奇, 杨崧. 镁合金在金属结构牺牲阳极阴极保护防腐中的应用研究[J]. 陕西水利, 2020, (8): 35- 36.
38 TAHERI M , PHILLIPS R C , KISH J R , et al. Analysis of the surface film formed on Mg by exposure to water using a FIB cross-section and STEM-EDS[J]. Corrosion Science, 2012, 59, 222- 228.
doi: 10.1016/j.corsci.2012.03.001
39 CAO F Y , SHI Z M , SONG G L , et al. Corrosion behaviour in salt spray and in 3.5%NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg-X alloys: X=Mn, Sn, Ca, Zn, Al, Zr, Si, Sr[J]. Corrosion Science, 2013, 76, 60- 97.
doi: 10.1016/j.corsci.2013.06.030
40 VERMILYEA D A , KIRK C F . Studies of inhibition of magnesium corrosion[J]. Journal of the Electrochemical Society, 1969, 116 (11): 1487.
doi: 10.1149/1.2411579
41 METALNIKOV P , BEN-HAMU G , ELIEZER D , et al. Role of Sn in microstructure and corrosion behavior of new wrought Mg-5Al alloy[J]. Journal of Alloys and Compounds, 2019, 777, 835- 849.
doi: 10.1016/j.jallcom.2018.11.003
42 ZENG R C , ZHANG J , HUANG W J , et al. Review of studies on corrosion of magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2006, 16 (Suppl 2): 763- 771.
43 邱六, 朱胜, 王晓明, 等. 镁合金腐蚀与防护的研究现状[J]. 热加工工艺, 2018, 47 (16): 31- 36.
43 QIU L , ZHU S , WANG X M , et al. Research status of corrosion and protection of magnesium alloys[J]. Hot Working Technology, 2018, 47 (16): 31- 36.
44 ESMAILY M , BLVCHER D B , SVENSSON J E , et al. New insights into the corrosion of magnesium alloys-the role of aluminum[J]. Scripta Materialia, 2016, 115, 91- 95.
doi: 10.1016/j.scriptamat.2016.01.008
45 CHENG Y L , QIN T W , WANG H M , et al. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2009, 19 (3): 517- 524.
doi: 10.1016/S1003-6326(08)60305-2
46 CAO H P , WESSEN M . Mechanisms of segregation band defect formation in pressure die-cast magnesium components[J]. Magnesium-Science, Technology and Applications, 2005, 488/489, 381- 384.
47 SONG Y W , HAN E H , SHAN D Y , et al. The effect of Zn concentration on the corrosion behavior of Mg-xZn alloys[J]. Corrosion Science, 2012, 65, 322- 330.
doi: 10.1016/j.corsci.2012.08.037
48 SHI Z M , JIA J X , ATRENS A . Galvanostatic anodic polarisation curves and galvanic corrosion of high purity Mg in 3.5%NaCl saturated with Mg(OH)2[J]. Corrosion Science, 2012, 60, 296- 308.
doi: 10.1016/j.corsci.2011.12.002
49 KIRKLAND N T , STAIGER M P , NISBET D , et al. Performance-driven design of biocompatible Mg alloys[J]. JOM, 2011, 63 (6): 28- 34.
doi: 10.1007/s11837-011-0089-z
50 HUAN Z G , LEEFLANG M A , ZHOU J , et al. In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys[J]. Journal of Materials Science-Materials in Medicine, 2010, 21 (9): 2623- 2635.
doi: 10.1007/s10856-010-4111-8
51 SONG Y W , HAN E H , SHAN D Y , et al. The role of second phases in the corrosion behavior of Mg-5Zn alloy[J]. Corrosion Science, 2012, 60, 238- 245.
doi: 10.1016/j.corsci.2012.03.030
52 ZHANG E L , YANG L , XU J W , et al. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application[J]. Acta Biomaterialia, 2010, 6 (5): 1756- 1762.
doi: 10.1016/j.actbio.2009.11.024
53 LIU X B , SHAN D Y , SONG Y W , et al. Effects of heat treatment on corrosion behaviors of Mg-3Zn magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20 (7): 1345- 1350.
doi: 10.1016/S1003-6326(09)60302-2
54 YIN D S , ZHANG E L , ZENG S Y . Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18 (4): 763- 768.
doi: 10.1016/S1003-6326(08)60131-4
55 CHEN T , XIONG X , YUAN Y , et al. Effect of steels on the purity of molten Mg alloys[J]. Advanced Engineering Materials, 2020, 22 (11): 2000338.
doi: 10.1002/adem.202000338
56 GANDEL D S , EASTON M A , GIBSON M A , et al. Influence of Mn and Zr on the corrosion of Al-free Mg alloys: part 2-impact of Mn and Zr on Mg alloy electrochemistry and corrosion[J]. Corrosion, 2013, 69 (8): 744- 751.
doi: 10.5006/0828
57 DANI M S , RAO V J , DAVE I B . A review on corrosion behaviour of Mn added magnesium and its alloys[J]. IARJSET, 2015, 2 (12): 71- 77.
doi: 10.17148/IARJSET.2015.21212
58 ZENG G , XIAN J W , GOURLAY C M . Nucleation and growth crystallography of Al8Mn5 on B2-Al(Mn, Fe) in AZ91 magnesium alloys[J]. Acta Materialia, 2018, 153, 364- 376.
doi: 10.1016/j.actamat.2018.04.032
59 CHEN T , YUAN Y , LIU T T , et al. Effect of Mn addition on melt purification and Fe tolerance in Mg alloys[J]. JOM, 2021, 73, 892- 902.
doi: 10.1007/s11837-020-04550-5
60 LIU J W, CHEN T, YUAN Y, et al. Two-stage settling approach to purify Mg alloy[C]//TMS in Magnesium Technology. Pittsburgh, PA: TMS, 2020: 55-59.
61 MAKAR G L , KRUGER J . Corrosion of magnesium[J]. International Materials Reviews, 1993, 38 (3): 138- 153.
doi: 10.1179/imr.1993.38.3.138
62 SONG G L , ATRENS A . Corrosion mechanisms of magnesium alloys[J]. Advanced Engineering Materials, 1999, 1 (1): 11- 33.
doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
63 BIRBILIS N . Journal focus: corrosion engineering, science and technology[J]. Materials World, 2012, 20 (8): 39.
64 KIM J I , NGUYEN H N , YOU B S , et al. Effect of Y addition on removal of Fe impurity from magnesium alloys[J]. Scripta Materialia, 2019, 162, 355- 360.
doi: 10.1016/j.scriptamat.2018.11.046
65 ZHANG X , ZHANG K , DENG X , et al. Corrosion behavior of Mg-Y alloy in NaCl aqueous solution[J]. Progress in Natural Science-Materials International, 2012, 22 (2): 169- 174.
doi: 10.1016/j.pnsc.2012.03.014
66 SVDHOLZ A D , KIRKLAND N T , BUCHHEIT R G , et al. Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys[J]. Electrochemical and Solid State Letters, 2011, 14 (2): C5- C7.
doi: 10.1149/1.3523229
67 SVDHOLZ A D , BIRBILIS N , BETTLES C J , et al. Corrosion behaviour of Mg-alloy AZ91E with atypical alloying additions[J]. Journal of Alloys and Compounds, 2009, 471 (1/2): 109- 115.
68 MA H , CHEN X Q , LI R H , et al. First-principles modeling of anisotropic anodic dissolution of metals and alloys in corrosive environments[J]. Acta Materialia, 2017, 130, 137- 146.
doi: 10.1016/j.actamat.2017.03.027
69 FENG Y , WANG R C , PENG C Q . Influence of Ga and In on microstructure and electrochemical properties of Mg anodes[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (9): 2650- 2656.
doi: 10.1016/S1003-6326(13)62781-8
70 SHABADI R , AMBAT R , DWARAKADASA E S . AZ91C magnesium alloy modified by Cd[J]. Materials & Design, 2014, 53, 445- 451.
71 ASHCROFT N W , KALOS M H , MERMIN N D . Geoffrey V Chester obituary[J]. Physics Today, 2014, 67 (10): 64.
72 LI W , LI D Y . Variations of work function and corrosion behaviors of deformed copper surfaces[J]. Applied Surface Science, 2005, 240 (1/4): 388- 395.
73 LI W , LI D Y . Influence of surface morphology on corrosion and electronic behavior[J]. Acta Materialia, 2006, 54 (2): 445- 452.
doi: 10.1016/j.actamat.2005.09.017
74 DANIEL H , CHAUDHURI S . A first principles investigation of corrosion chemistry of common elemental impurities in Mg-Al alloys[J]. Corrosion, 2017, 73 (5): 596- 604.
doi: 10.5006/2392
75 HOCHE D , CARSTEN B , SVIATLANA V L , et al. The effect of iron re-deposition on the corrosion of impurity-containing magnesium[J]. Physical Chemistry Chemical Physics, 2016, 18 (2): 1279- 1291.
doi: 10.1039/C5CP05577F
76 TAHERI M , KISH J R , BIRBILIS N , et al. Towards a physical description for the origin of enhanced catalytic activity of corroding magnesium surfaces[J]. Electrochimica Acta, 2014, 116, 396- 403.
doi: 10.1016/j.electacta.2013.11.086
77 ZHAO P Y , XIE T , XU X , et al. Designing high corrosion resistant peritectic magnesium alloys via Sc and Y addition[J]. Metallurgical and Materials Transactions A, 2020, 51 (5): 2509- 2522.
doi: 10.1007/s11661-020-05693-5
[1] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[2] 夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
[3] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[4] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[5] 刘石双, 周毅, 李娟, 曹京霞, 蔡建明, 黄旭, 戴圣龙. Ti-22Al-23Nb-1Mo-1Zr合金环锻件组织演变及力学行为[J]. 材料工程, 2022, 50(4): 147-155.
[6] 张小丽, 冯晓伟, 申勇峰. D6A钢在轧制过程中的强韧化机理[J]. 材料工程, 2022, 50(4): 172-180.
[7] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[8] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[9] 孙辉, 武会宾, 张游游, 袁睿, 张志慧. Cr含量对CrMnFeNi系高熵合金腐蚀行为的影响[J]. 材料工程, 2022, 50(11): 127-134.
[10] 信云鹏, 朱知寿, 王新南, 商国强, 王彦伟, 李明兵. 固溶冷却速率对全片层亚稳β钛合金α相形貌的影响[J]. 材料工程, 2022, 50(10): 80-86.
[11] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[12] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[13] 田亚强, 赵冠璋, 刘芸, 张源, 郑小平, 陈连生. 生物可降解医用镁合金体内外降解行为研究进展[J]. 材料工程, 2021, 49(5): 24-37.
[14] 冯靖凯, 张丁非, 陈霞, 赵阳, 蒋斌, 潘复生. 一种细化AZ31镁合金的固液两相区复合挤压工艺[J]. 材料工程, 2021, 49(4): 78-88.
[15] 陈枫, 刘佩文, 许贤福, 田兵, 佟运祥, 李莉. Ni-Mn基磁性形状记忆合金第二相的形成及其对相变和性能的影响[J]. 材料工程, 2021, 49(3): 20-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn