Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (12): 28-39    DOI: 10.11868/j.issn.1001-4381.2021.000289
  镁合金腐蚀与防护专栏 本期目录 | 过刊浏览 | 高级检索 |
合金元素对镁合金耐腐蚀性能影响的研究进展
阴明1,2, 孙俊丽1,2, 鲍同尧1,2, 刘笑达1,2, 杜华云1,2, 卫英慧1,2, 侯利锋1,2,*()
1 太原理工大学 材料科学与工程学院, 太原 030024
2 山西省金属材料腐蚀与防护工程技术研究中心, 太原 030024
Research progress in effect of alloying elements on corrosion resistance of magnesium alloys
Ming YIN1,2, Jun-li SUN1,2, Tong-yao BAO1,2, Xiao-da LIU1,2, Hua-yun DU1,2, Ying-hui WEI1,2, Li-feng HOU1,2,*()
1 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Corrosion and Protection Engineering Technology Research Center of Shanxi Province, Taiyuan 030024, China
全文: PDF(17200 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

镁及其合金作为最轻的金属结构材料,在产品轻量化方面具有巨大的应用潜力。然而,金属镁具有较强的腐蚀敏感性,且表面形成的氢氧化镁膜疏松多孔,几乎无保护性,这导致其应用受到限制。如何提高镁的耐腐蚀性已经成为制约其应用的世界性难题。合金化是从根本上改善镁合金耐蚀性的方法之一。基于此,本文从合金元素对镁腐蚀行为的影响出发,阐述纯镁的腐蚀机理和合金元素对镁合金腐蚀性能的影响机制,归纳合金元素对镁合金所产生的保护机制及其相应特征,这可以为开发新型镁合金和改善镁合金的耐蚀性提供一定的借鉴。此外,本文有助于更好地理解镁合金腐蚀行为。目前,还没有一种镁合金能像铝合金或不锈钢一样具有较好的耐蚀性,因此耐蚀镁合金的开发还需要进一步研究。本文为镁合金中元素之间的交互关系提供理论基础,可对新型耐蚀镁合金的开发提供思路。元素之间的协同作用会对新型耐蚀镁合金设计、工艺及性能有较大影响,随着研究的深入,期望构建出类似"不锈钢"的新型耐蚀镁合金。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阴明
孙俊丽
鲍同尧
刘笑达
杜华云
卫英慧
侯利锋
关键词 镁合金合金元素腐蚀性能腐蚀机理    
Abstract

As the lightest metal structural materials, magnesium and its alloys have great potential to achieve lightweight products in the future. However, magnesium has a high corrosion sensitivity, and the magnesium hydroxide film formed on the surface is loose and porous with little protection, which leads to its application being limited. How to improve the corrosion resistance of magnesium has become a worldwide problem that restricts its application. Alloying is one of the ways to radically improve the corrosion resistance of magnesium alloys. In this paper, the corrosion mechanisms of pure magnesium and the mechanisms of alloying elements on the corrosion performance of magnesium alloys are described in terms of the influence of alloying elements on the corrosion resistance of magnesium and its alloys. In addition, protection mechanisms produced by alloying elements on magnesium alloys were compiled, and the protection mechanisms and corresponding characteristics of beneficial elements on magnesium alloys were summarized. This can provide some reference for the development of new magnesium alloys and the improvement of the corrosion resistance of magnesium alloys. In addition, this paper contributes to a better understanding of the corrosion behavior of magnesium alloys. At present, there is no magnesium alloys can be as good as aluminum alloys or stainless steels corrosion resistance, so the development of corrosion-resistant magnesium alloys needs further research. This paper provides a theoretical basis for the interaction between elements in magnesium alloys, which can provide ideas for the development of new corrosion-resistant magnesium alloys. The synergy between the elements will have a significant impact on the design, process and performance of new corrosion resistant magnesium alloys, and as the research progresses, it is expected that new corrosion-resistant magnesium alloys similar to "stainless steel" will be constructed.

Key wordsmagnesium alloy    alloying element    corrosion resistance performance    corrosion mechanism
收稿日期: 2021-03-31      出版日期: 2021-12-20
中图分类号:  TB304  
基金资助:国家自然科学基金资助项目(52071227);山西省平台基地建设项目(2018D121003);中央引导地方科技发展专项资金项目(YDZX20191400002094)
通讯作者: 侯利锋     E-mail: houlifeng@tyut.edu.cn
作者简介: 侯利锋(1978-), 女, 教授, 博士, 主要从事金属材料腐蚀与防护研究, 联系地址: 山西省太原市万柏林区迎泽西大街79号太原理工大学材料学院(030024), E-mail: houlifeng@tyut.edu.cn
引用本文:   
阴明, 孙俊丽, 鲍同尧, 刘笑达, 杜华云, 卫英慧, 侯利锋. 合金元素对镁合金耐腐蚀性能影响的研究进展[J]. 材料工程, 2021, 49(12): 28-39.
Ming YIN, Jun-li SUN, Tong-yao BAO, Xiao-da LIU, Hua-yun DU, Ying-hui WEI, Li-feng HOU. Research progress in effect of alloying elements on corrosion resistance of magnesium alloys. Journal of Materials Engineering, 2021, 49(12): 28-39.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000289      或      http://jme.biam.ac.cn/CN/Y2021/V49/I12/28
Fig.1  Mg-O-H系统的E-pH关系[34]
Metal element P-B Metal element P-B Metal element P-B
Be 1.59 K 0.45 Cu 1.68
Al 1.28 Cd 1.21 Cr 1.99
Mn 1.79 Mo 3.40 Fe 2.17
Co 1.99 Sb 2.35 Ni 1.52
Pd 1.60 Ta 2.33 Pb 1.40
Ce 1.16 V 3.18 Ag 1.59
Ti 1.95 Hf 2.61 W 3.40
U 3.05 Mg 0.81 In 1.01
Table 1  不同金属的P-B值[35]
Fig.2  基于Fe在Mg表面再沉积的影响异常析氢的示意图[48]
Fig.3  元素在Mg中的固溶度
Fig.4  Mg-3Al-xGe(AG3x)合金的显微结构[56]
(a)AG31;(b)AG33;(c)AG35;(d)AG31H;(e)AG33H;(f)AG35H;
Fig.5  铸态Mg-Sn-In合金的光学显微组织[19]
(a)Mg-1Sn;(b)Mg-1Sn-0.5In;(c)Mg-1Sn-1In;(d)Mg-1Sn-1.5In;(e)Mg-1Sn-2In;(f)Mg-1Sn-2.5In
Fig.6  由经验数据得出的等值线图,表明0.1 mol/L氯化钠中的腐蚀电流密度在铁和锰含量的一定范围内的变化,其中x轴上的铁含量代表 0~500 mg/dm3[67]
Fig.7  Mg-In合金腐蚀过程中的横截面示意图[5]
(a)In在Mg表面上的吸附和置换反应;(b)浸泡25天后形成的腐蚀层;(c)浸泡200天后形成的腐蚀层
Fig.8  Mg-33%Li合金表面膜的现象解释与施加电势的关系示意图[82]
Protection mechanism Related alloying element Elemental characteristic
Microstructure optimization Al,Ge,In,Sn The alloying elements can form a second phase with Mg or form a segregation
Sacrificial protection of theanode phase Ca The formed second phase potential is lower than that of the Mg matrix
Reduction of impurity content Mn,Ti,Zr,Zn,Be Elements can bind to impurities, purify the melt and increase the tolerance limits of impurities
Cathodic poisoning As,Ge The element can strongly inhibit the cathodic reaction
Change of surface layer Li,In,Sn,Al,Zn,RE Reaction products of alloying elements can fill or build up corrosion layers
Improvement of matrix inertia Al,Zr,In,Zn,Sn,Pb The introduced elements can increase the matrix potential
Inhibition of anomaloushydrogen evolution Sn,In,Al,Zn,Pb,Mn The element has the ability to increase the hydrogen evolution overpotential of Mg
Grain refinement Zr,RE,Al,Y,Sn,In,Sb,Ca Alloying elements can refine the microstructure
Table 2  有益合金元素对镁及其合金的相关保护机制和特征[1, 5, 19, 55-86]
1 ESMAILY M , SVENSSON J E , FAJARDO S , et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89 (1): 92- 193.
2 ZHONG L , WANG Y , LUO H , et al. Influence of aging prior to extrusion on the microstructure and corrosion resistance of Mg-8Sn-2Zn-0.2Mn alloy[J]. Journal of Alloys and Compounds, 2019, 780, 783- 791.
doi: 10.1016/j.jallcom.2018.11.400
3 ZHAO Y C , ZHAO M C , XU R , et al. Formation and characteristic corrosion behavior of alternately lamellar arranged α and β in as-cast AZ91 Mg alloy[J]. Journal of Alloys and Compounds, 2019, 770, 549- 558.
doi: 10.1016/j.jallcom.2018.08.103
4 POLLOCK T M . Weight loss with magnesium alloys[J]. Science, 2010, 328, 986- 987.
doi: 10.1126/science.1182848
5 YIN M , HOU L , WANG Z , et al. Self-generating construction of applicable corrosion-resistant surface structure of magnesium alloy[J]. Corrosion Science, 2021, 184, 109378.
doi: 10.1016/j.corsci.2021.109378
6 WANG N , MU Y , XIONG W , et al. Effect of crystallographic orientation on the discharge and corrosion behaviour of AP65 magnesium alloy anodes[J]. Corrosion Science, 2018, 144, 107- 126.
doi: 10.1016/j.corsci.2018.08.003
7 NAZER N S , DENYS R V , ANDERSEN H F , et al. Nanostructured magnesium silicide Mg2Si and its electrochemical performance as an anode of a lithium ion battery[J]. Journal of Alloys and Compounds, 2017, 718 (17): 478- 491.
8 DENG M , HÖCHE D , LAMAKA S V , et al. Mg-Ca binary alloys as anodes for primary Mg-air batteries[J]. Journal of Power Sources, 2018, 396, 109- 118.
doi: 10.1016/j.jpowsour.2018.05.090
9 LIU X , LIU S , XUE J . Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries[J]. Journal of Power Sources, 2018, 396, 667- 674.
doi: 10.1016/j.jpowsour.2018.06.085
10 SCHLOFFER D , BOZORGI S , SHERSTNEV P , et al. Manufacturing and characterization of magnesium alloy foils for use as anode materials in rechargeable magnesium ion batteries[J]. Journal of Power Sources, 2017, 367, 138- 144.
doi: 10.1016/j.jpowsour.2017.09.062
11 曾静, 武东政, 庄奕超, 等. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49 (2): 10- 20.
11 ZENG J , WU D Z , ZHUANG Y C , et al. Research progress in strategies for improving performance of cathode materials for magnesium batteries[J]. Journal of Materials Engineering, 2021, 49 (2): 10- 20.
12 LI L Y , CUI L Y , ZENG R C , et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys-a review[J]. Acta Biomater, 2018, 79, 23- 36.
doi: 10.1016/j.actbio.2018.08.030
13 PANEMANGALORE D B , SHABADI R , GUPTA M , et al. Effect of fluoride coatings on the corrosion behavior of Mg-Zn-Er alloys[J]. Surfaces and Interfaces, 2019, 14, 72- 81.
doi: 10.1016/j.surfin.2018.11.007
14 CHENG W L , MA S C , BAI Y , et al. Corrosion behavior of Mg-6Bi-2Sn alloy in the simulated body fluid solution: the influence of microstructural characteristics[J]. Journal of Alloys and Compounds, 2018, 731, 945- 954.
doi: 10.1016/j.jallcom.2017.10.073
15 万天, 宋述鹏, 王今朝, 等. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48 (1): 19- 26.
15 WAN T , SONG S P , WANG J Z , et al. Research progress in corrosion behavior of biomedical magnesium alloys[J]. Journal of Materials Engineering, 2020, 48 (1): 19- 26.
16 NORDLIEN J H , ONO S , MASUKO N , et al. A TEM investigation of naturally formed oxide films on pure magnesium[J]. Corrosion Science, 1997, 39 (8): 1397- 1414.
doi: 10.1016/S0010-938X(97)00037-1
17 LING S G , ANDREJ A . Corrosion mechanisms of magnesium alloys[J]. Advanced Engineering Materials, 1999, 1 (1): 11- 33.
doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
18 FUGGLE J C , WATSON L M , FABIAN D J , et al. X-ray photoelectron studies of the reaction of clean metals (Mg, Al, Cr, Mn) with oxygen and water vapour[J]. Surface Science, 1975, 49 (1): 61- 76.
doi: 10.1016/0039-6028(75)90328-3
19 YIN M , HOU L , LIU X , et al. Tailoring the micromorphology of the as-cast Mg-Sn-In alloys to corrosion-resistant microstructures via adjusting In concentration[J]. Journal of Alloys and Compounds, 2019, 811, 152024.
doi: 10.1016/j.jallcom.2019.152024
20 LIAO J , HOTTA M , MORI Y . Improved corrosion resistance of a high-strength Mg-Al-Mn-Ca magnesium alloy made by rapid solidification powder metallurgy[J]. Materials Science and Engineering: A, 2012, 544, 10- 20.
doi: 10.1016/j.msea.2012.02.046
21 ATRENS A , SONG G L , CAO F , et al. Advances in Mg corrosion and research suggestions[J]. Journal of Magnesium and Alloys, 2013, 1 (3): 177- 200.
doi: 10.1016/j.jma.2013.09.003
22 THOMAS S , MEDHEKAR N V , FRANKEL G S , et al. Corrosion mechanism and hydrogen evolution on Mg[J]. Current Opinion in Solid State and Materials Science, 2015, 19 (2): 85- 94.
doi: 10.1016/j.cossms.2014.09.005
23 LAMAKA S V , HÖCHE D , PETRAUSKAS R P , et al. A new concept for corrosion inhibition of magnesium: suppression of iron re-deposition[J]. Electrochemistry Communications, 2016, 62, 5- 8.
doi: 10.1016/j.elecom.2015.10.023
24 SONG Y , SHAN D , CHEN R , et al. Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy[J]. Corrosion Science, 2010, 52 (5): 1830- 1837.
doi: 10.1016/j.corsci.2010.02.017
25 MIAO H , HUANG H , SHI Y , et al. Effects of solution treatment before extrusion on the microstructure, mechanical properties and corrosion of Mg-Zn-Gd alloy in vitro[J]. Corrosion Science, 2017, 122, 90- 99.
doi: 10.1016/j.corsci.2017.01.001
26 YIN Z , CHEN Y , YAN H , et al. Effects of the second phases on corrosion resistance of AZ91-xGd alloys treated with ultrasonic vibration[J]. Journal of Alloys and Compounds, 2019, 783, 877- 885.
doi: 10.1016/j.jallcom.2019.01.002
27 HOU L , LI Y , SUN J , et al. Enhancement corrosion resistance of Mg Al layered double hydroxides films by anion-exchange mechanism on magnesium alloys[J]. Applied Surface Science, 2019, 487, 101- 108.
doi: 10.1016/j.apsusc.2019.05.048
28 ASCENCIO M , PEKGULERYUZ M , OMANOVIC S . Corrosion behaviour of polypyrrole-coated WE43 Mg alloy in a modified simulated body fluid solution[J]. Corrosion Science, 2018, 133, 261- 275.
doi: 10.1016/j.corsci.2018.01.044
29 MISKOVIC D M , POHL K , BIRBILIS N , et al. Formation of a phosphate conversion coating on bioresorbable Mg-based metallic glasses and its effect on corrosion performance[J]. Corrosion Science, 2017, 129, 214- 225.
doi: 10.1016/j.corsci.2017.10.014
30 YANG H , GUO X , WU G , et al. Electrodeposition of chemically and mechanically protective Al-coatings on AZ91D Mg alloy[J]. Corrosion Science, 2011, 53 (1): 381- 387.
doi: 10.1016/j.corsci.2010.09.047
31 YANG H , GUO X , CHEN X , et al. A homogenisation pre-treatment for adherent and corrosion-resistant Ni electroplated coatings on Mg-alloy AZ91D[J]. Corrosion Science, 2014, 79, 41- 49.
doi: 10.1016/j.corsci.2013.10.024
32 MOON S , NAM Y . Anodic oxidation of Mg-Sn alloys in alkaline solutions[J]. Corrosion Science, 2012, 65, 494- 501.
doi: 10.1016/j.corsci.2012.08.050
33 HOU L , DANG N , YANG H , et al. A combined inhibiting effect of sodium alginate and sodium phosphate on the corrosion of magnesium alloy AZ31 in NaCl solution[J]. Journal of the Electrochemical Society, 2016, 163 (8): C486- C494.
doi: 10.1149/2.0941608jes
34 MAKAR GL , KRUGER J . Corrosion of magnesium[J]. International Materials Reviews, 1993, 38 (3): 138- 153.
doi: 10.1179/imr.1993.38.3.138
35 习小明. 多相氧化还原法制备超微粉末的理论分析[J]. 新余高专学报, 2009, 14 (6): 12- 15.
doi: 10.3969/j.issn.2095-3054.2009.06.003
35 XI X M . Theoretic analysis of preparation of ultramicro powder through multi-phase oxidation reduction[J]. Journal of Xinyu College, 2009, 14 (6): 12- 15.
doi: 10.3969/j.issn.2095-3054.2009.06.003
36 CAO F , SONG G L , ATRENS A . Corrosion and passivation of magnesium alloys[J]. Corrosion Science, 2016, 111, 835- 845.
doi: 10.1016/j.corsci.2016.05.041
37 PETTY R L , DAVIDSON A W , KLEINBERG J . The anodic oxidation of magnesium metal: evidence for the existence of unipositive magnesium1, 2[J]. Journal of the American Chemical Society, 1954, 76 (2): 363- 366.
doi: 10.1021/ja01631a013
38 ATRENS A , SONG G L , LIU M , et al. Review of recent developments in the field of magnesium corrosion[J]. Advanced Engineering Materials, 2015, 17 (4): 400- 453.
doi: 10.1002/adem.201400434
39 SONG G , ATRENS A . Understanding magnesium corrosion-a framework for improved alloy performance[J]. Advanced Engineering Materials, 2003, 5 (12): 837- 858.
doi: 10.1002/adem.200310405
40 SONG G , ATRENS A . Recent insights into the mechanism of magnesium corrosion and research suggestions[J]. Advanced Engineering Materials, 2007, 9 (3): 177- 183.
doi: 10.1002/adem.200600221
41 ATRENS A , LIU M , ZAINAL ABIDIN N I . Corrosion mechanism applicable to biodegradable magnesium implants[J]. Materials Science and Engineering: B, 2011, 176 (20): 1609- 1636.
doi: 10.1016/j.mseb.2010.12.017
42 BIRBILIS N , KING A D , THOMAS S , et al. Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution[J]. Electrochimica Acta, 2014, 132, 277- 283.
doi: 10.1016/j.electacta.2014.03.133
43 SALLEH S H , THOMAS S , YUWONO J A , et al. Enhanced hydrogen evolution on Mg (OH)2 covered Mg surfaces[J]. Electrochimica Acta, 2015, 161, 144- 152.
doi: 10.1016/j.electacta.2015.02.079
44 WILLIAMS G , BIRBILIS N , MCMURRAY H N . Controlling factors in localised corrosion morphologies observed for magnesium immersed in chloride containing electrolyte[J]. Faraday Discuss, 2015, 180, 313- 330.
doi: 10.1039/C4FD00268G
45 CURIONI M . The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging[J]. Electrochimica Acta, 2014, 120, 284- 292.
doi: 10.1016/j.electacta.2013.12.109
46 LYSNE D , THOMAS S , HURLEY M F , et al. On the Fe enrichment during anodic polarization of Mg and its impact on hydrogen evolution[J]. Journal of The Electrochemical Society, 2015, 162 (8): 396- 402.
doi: 10.1149/2.0251508jes
47 BIRBILIS N , CAIN T , LAIRD J S , et al. Nuclear microprobe analysis for determination of element enrichment following magnesium dissolution[J]. ECS Electrochemistry Letters, 2015, 4 (10): 34- 37.
doi: 10.1149/2.0081510eel
48 HÖCHE D , BLAWERT C , LAMAKA S V , et al. The effect of iron re-deposition on the corrosion of impurity-containing magnesium[J]. Physical Chemistry Chemical Physics, 2016, 18 (2): 1279- 1291.
doi: 10.1039/C5CP05577F
49 FRANKEL G S , SAMANIEGO A , BIRBILIS N . Evolution of hydrogen at dissolving magnesium surfaces[J]. Corrosion Science, 2013, 70, 104- 111.
doi: 10.1016/j.corsci.2013.01.017
50 WILLIAMS G , BIRBILIS N , MCMURRAY H N . The source of hydrogen evolved from a magnesium anode[J]. Electrochemistry Communications, 2013, 36, 1- 5.
doi: 10.1016/j.elecom.2013.08.023
51 FAJARDO S , FRANKEL G S . Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium[J]. Electrochimica Acta, 2015, 165, 255- 267.
doi: 10.1016/j.electacta.2015.03.021
52 GUSIEVA K , DAVIES C H J , SCULLY J R , et al. Corrosion of magnesium alloys: the role of alloying[J]. International Materials Reviews, 2014, 60 (3): 169- 194.
53 HU Z , LIU R L , KAIRY S K , et al. Effect of Sm additions on the microstructure and corrosion behavior of magnesium alloy AZ91[J]. Corrosion Science, 2019, 149, 144- 152.
doi: 10.1016/j.corsci.2019.01.024
54 CAO F F , DENG K K , NIE K B , et al. Microstructure and corrosion properties of Mg-4Zn-2Gd-0.5Ca alloy influenced by multidirectional forging[J]. Journal of Alloys and Compounds, 2019, 770, 1280- 1220.
55 SONG G L , ATAENS A , WU X L , et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride[J]. Corrosion Science, 1998, 40 (10): 1769- 1791.
doi: 10.1016/S0010-938X(98)00078-X
56 LIU X , YIN M , ZHANG S , et al. Corrosion behavior of the as-cast and as-solid solution Mg-Al-Ge alloy[J]. Materials, 2018, 11 (10): 1812- 1821.
doi: 10.3390/ma11101812
57 JIANG P , BLAWERT C , HOU R , et al. Microstructural influence on corrosion behavior of MgZnGe alloy in NaCl solution[J]. Journal of Alloys and Compounds, 2019, 783, 179- 192.
doi: 10.1016/j.jallcom.2018.12.296
58 FAN Y , WU G , ZHAI C . Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy[J]. Materials Science and Engineering: A, 2006, 433 (1): 208- 215.
59 ZHANG J , WANG J , QIU X , et al. Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg-4Al-based alloy[J]. Journal of Alloys and Compounds, 2008, 464 (1): 556- 564.
60 ZHANG J , NIU X , QIU X , et al. Effect of yttrium-rich misch metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy[J]. Journal of Alloys and Compounds, 2009, 471 (1): 322- 330.
61 MEN H , FAN Z . Effects of solute content on grain refinement in an isothermal melt[J]. Acta Materialia, 2011, 59 (7): 2704- 2712.
doi: 10.1016/j.actamat.2011.01.008
62 YANG J , PENG J , NYBERG E A , et al. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy[J]. Applied Surface Science, 2016, 369, 92- 100.
doi: 10.1016/j.apsusc.2016.01.283
63 CAO F , SHI Z , SONG G L , et al. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg-X alloys: X=Mn, Sn, Ca, Zn, Al, Zr, Si, Sr[J]. Corrosion Science, 2013, 76, 60- 97.
doi: 10.1016/j.corsci.2013.06.030
64 JEONG Y S , KIM W J . Enhancement of mechanical properties and corrosion resistance of Mg-Ca alloys through microstructural refinement by indirect extrusion[J]. Corrosion Science, 2014, 82, 392- 403.
doi: 10.1016/j.corsci.2014.01.041
65 KIM K H , NAM N D , KIM J G , et al. Effect of calcium addition on the corrosion behavior of Mg-5Al alloy[J]. Intermetallics, 2011, 19 (12): 1831- 1838.
doi: 10.1016/j.intermet.2011.07.024
66 MCNULTY R E , HANAWALT J D . Some corrosion characteristics of high purity magnesium alloys[J]. Transactions of the Electrochemical Society, 1942, 81 (1): 423- 433.
doi: 10.1149/1.3071389
67 SIMANJUNTAK S , CAVANAUGH M K , GANDEL D S , et al. The influence of iron, manganese, and zirconium on the corrosion of magnesium: an artificial neural network approach[J]. Corrosion, 2015, 71 (2): 199- 208.
doi: 10.5006/1467
68 NAM N D , MATHESH M , FORSYTH M , et al. Effect of manganese additions on the corrosion behavior of an extruded Mg-5Al based alloy[J]. Journal of Alloys and Compounds, 2012, 542, 199- 206.
doi: 10.1016/j.jallcom.2012.07.083
69 CANDAN S , UNAL M , KOC E , et al. Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy[J]. Journal of Alloys and Compounds, 2011, 509 (5): 1958- 1963.
doi: 10.1016/j.jallcom.2010.10.100
70 CHANG J W , FU P H , GUO X W , et al. The effects of heat treatment and zirconium on the corrosion behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy[J]. Corrosion Science, 2007, 49 (6): 2612- 2627.
doi: 10.1016/j.corsci.2006.12.011
71 BIRBILIS N , WILLIAMS G , GUSIEVA K , et al. Poisoning the corrosion of magnesium[J]. Electrochemistry Communications, 2013, 34, 295- 298.
doi: 10.1016/j.elecom.2013.07.021
72 LIU R L , HURLEY M F , KVRYAN A , et al. Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge[J]. Scientific Reports, 2016, 6, 28747.
doi: 10.1038/srep28747
73 LIU R L , ZENG Z R , SCULLY J R , et al. Simultaneously improving the corrosion resistance and strength of magnesium via low levels of Zn and Ge additions[J]. Corrosion Science, 2018, 140, 18- 29.
doi: 10.1016/j.corsci.2018.06.027
74 HA H Y , KANG J Y , YANG J , et al. Role of Sn in corrosion and passive behavior of extruded Mg-5wt%Sn alloy[J]. Corrosion Science, 2016, 102, 355- 362.
doi: 10.1016/j.corsci.2015.10.028
75 YANG J , YIM C D , YOU B S . Effects of Sn in α-Mg matrix on properties of surface films of Mg-xSn (x=0, 2, 5wt%) alloys[J]. Materials and Corrosion, 2016, 67 (5): 531- 541.
doi: 10.1002/maco.201508585
76 CAIN T W , GLOVER C F , SCULLY J R . The corrosion of solid solution Mg-Sn binary alloys in NaCl solutions[J]. Electrochimica Acta, 2019, 297, 564- 575.
doi: 10.1016/j.electacta.2018.11.118
77 METALNIKOV P , BEN-HAMU G , ELIEZER D , et al. Role of Sn in microstructure and corrosion behavior of new wrought Mg-5Al alloy[J]. Journal of Alloys and Compounds, 2019, 777, 835- 849.
doi: 10.1016/j.jallcom.2018.11.003
78 NAYYERI M J , KHOMAMIZADEH F . Effect of RE elements on the microstructural evolution of as cast and SIMA processed Mg-4Al alloy[J]. Journal of Alloys and Compounds, 2011, 509 (5): 1567- 1572.
doi: 10.1016/j.jallcom.2010.10.147
79 ARRABAL R , PARDO A , MERINO M C , et al. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5wt.% NaCl solution[J]. Corrosion Science, 2012, 55, 301- 312.
doi: 10.1016/j.corsci.2011.10.033
80 WU L , LI H . Effect of selective oxidation on corrosion behavior of Mg-Gd-Y-Zn-Zr alloy[J]. Corrosion Science, 2018, 142, 238- 248.
doi: 10.1016/j.corsci.2018.07.026
81 JIA R , YU S , LI D , et al. Study on the effect of mischmetal (La, Ce) on the micro-galvanic corrosion of AZ91 alloy using multiscale methods[J]. Journal of Alloys and Compounds, 2019, 778, 427- 438.
doi: 10.1016/j.jallcom.2018.11.030
82 HOU L , RAVEGGI M , CHEN X B , et al. Investigating the passivity and dissolution of a corrosion resistant Mg-33at.% Li alloy in aqueous chloride using online ICP-MS[J]. Journal of the Electrochemical Society, 2016, 163 (6): 324- 329.
doi: 10.1149/2.0871606jes
83 XU W , BIRBILIS N , SHA G , et al. A high-specific-strength and corrosion-resistant magnesium alloy[J]. Nat Mater, 2015, 14 (12): 1229- 1235.
doi: 10.1038/nmat4435
84 BAO T , HOU L , SUN J , et al. Effect of indium on the negative difference effect for magnesium alloy[J]. Journal of the Electrochemical Society, 2021, 168 (3): 031515.
doi: 10.1149/1945-7111/abee5c
85 ZHANG J L , LIU Y L , ZHOU J , et al. Kinetic study on the corrosion behavior of AM60 magnesium alloy with different Nd contents[J]. Journal of Alloys and Compounds, 2015, 629, 290- 296.
doi: 10.1016/j.jallcom.2014.12.143
86 HOMAYUN B , AFSHAR A . Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg-Zn-Al-Ca alloys as biodegradable materials[J]. Journal of Alloys and Compounds, 2014, 607, 1- 10.
doi: 10.1016/j.jallcom.2014.04.059
87 ALVAREZ-LOPEZ M , PEREDA M D , del VALLE J A , et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids[J]. Acta Biomater, 2010, 6 (5): 1763- 1771.
doi: 10.1016/j.actbio.2009.04.041
[1] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[2] 夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
[3] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[4] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[5] 张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
[6] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[7] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[8] 田亚强, 赵冠璋, 刘芸, 张源, 郑小平, 陈连生. 生物可降解医用镁合金体内外降解行为研究进展[J]. 材料工程, 2021, 49(5): 24-37.
[9] 冯靖凯, 张丁非, 陈霞, 赵阳, 蒋斌, 潘复生. 一种细化AZ31镁合金的固液两相区复合挤压工艺[J]. 材料工程, 2021, 49(4): 78-88.
[10] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[11] 陈燕宁, 吴量, 陈勇花, 程苓, 姚文辉, 潘复生. 镁合金表面氧化石墨烯复合涂层的研究现状[J]. 材料工程, 2021, 49(12): 1-13.
[12] 汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
[13] 蒋诗语, 袁媛, 陈涛, 谷达冲. 元素固溶与析出对镁合金耐蚀性影响的研究进展[J]. 材料工程, 2021, 49(12): 40-47.
[14] 黄居峰, 宋光铃. 镁合金阳极的析氢、效率与电偶腐蚀放大效应[J]. 材料工程, 2021, 49(12): 48-56.
[15] 李忠盛, 吴护林, 丁星星, 黄安畏, 宋凯强, 詹青青, 丛大龙. AZ80镁合金表面冷喷涂铝/微弧氧化复合涂层耐蚀性能[J]. 材料工程, 2021, 49(12): 57-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn