1 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2 Corrosion and Protection Engineering Technology Research Center of Shanxi Province, Taiyuan 030024, China
As the lightest metal structural materials, magnesium and its alloys have great potential to achieve lightweight products in the future. However, magnesium has a high corrosion sensitivity, and the magnesium hydroxide film formed on the surface is loose and porous with little protection, which leads to its application being limited. How to improve the corrosion resistance of magnesium has become a worldwide problem that restricts its application. Alloying is one of the ways to radically improve the corrosion resistance of magnesium alloys. In this paper, the corrosion mechanisms of pure magnesium and the mechanisms of alloying elements on the corrosion performance of magnesium alloys are described in terms of the influence of alloying elements on the corrosion resistance of magnesium and its alloys. In addition, protection mechanisms produced by alloying elements on magnesium alloys were compiled, and the protection mechanisms and corresponding characteristics of beneficial elements on magnesium alloys were summarized. This can provide some reference for the development of new magnesium alloys and the improvement of the corrosion resistance of magnesium alloys. In addition, this paper contributes to a better understanding of the corrosion behavior of magnesium alloys. At present, there is no magnesium alloys can be as good as aluminum alloys or stainless steels corrosion resistance, so the development of corrosion-resistant magnesium alloys needs further research. This paper provides a theoretical basis for the interaction between elements in magnesium alloys, which can provide ideas for the development of new corrosion-resistant magnesium alloys. The synergy between the elements will have a significant impact on the design, process and performance of new corrosion resistant magnesium alloys, and as the research progresses, it is expected that new corrosion-resistant magnesium alloys similar to "stainless steel" will be constructed.
The alloying elements can form a second phase with Mg or form a segregation
Sacrificial protection of theanode phase
Ca
The formed second phase potential is lower than that of the Mg matrix
Reduction of impurity content
Mn,Ti,Zr,Zn,Be
Elements can bind to impurities, purify the melt and increase the tolerance limits of impurities
Cathodic poisoning
As,Ge
The element can strongly inhibit the cathodic reaction
Change of surface layer
Li,In,Sn,Al,Zn,RE
Reaction products of alloying elements can fill or build up corrosion layers
Improvement of matrix inertia
Al,Zr,In,Zn,Sn,Pb
The introduced elements can increase the matrix potential
Inhibition of anomaloushydrogen evolution
Sn,In,Al,Zn,Pb,Mn
The element has the ability to increase the hydrogen evolution overpotential of Mg
Grain refinement
Zr,RE,Al,Y,Sn,In,Sb,Ca
Alloying elements can refine the microstructure
Table 2 有益合金元素对镁及其合金的相关保护机制和特征[1, 5, 19, 55-86]
1
ESMAILY M , SVENSSON J E , FAJARDO S , et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89 (1): 92- 193.
2
ZHONG L , WANG Y , LUO H , et al. Influence of aging prior to extrusion on the microstructure and corrosion resistance of Mg-8Sn-2Zn-0.2Mn alloy[J]. Journal of Alloys and Compounds, 2019, 780, 783- 791.
doi: 10.1016/j.jallcom.2018.11.400
3
ZHAO Y C , ZHAO M C , XU R , et al. Formation and characteristic corrosion behavior of alternately lamellar arranged α and β in as-cast AZ91 Mg alloy[J]. Journal of Alloys and Compounds, 2019, 770, 549- 558.
doi: 10.1016/j.jallcom.2018.08.103
4
POLLOCK T M . Weight loss with magnesium alloys[J]. Science, 2010, 328, 986- 987.
doi: 10.1126/science.1182848
5
YIN M , HOU L , WANG Z , et al. Self-generating construction of applicable corrosion-resistant surface structure of magnesium alloy[J]. Corrosion Science, 2021, 184, 109378.
doi: 10.1016/j.corsci.2021.109378
6
WANG N , MU Y , XIONG W , et al. Effect of crystallographic orientation on the discharge and corrosion behaviour of AP65 magnesium alloy anodes[J]. Corrosion Science, 2018, 144, 107- 126.
doi: 10.1016/j.corsci.2018.08.003
7
NAZER N S , DENYS R V , ANDERSEN H F , et al. Nanostructured magnesium silicide Mg2Si and its electrochemical performance as an anode of a lithium ion battery[J]. Journal of Alloys and Compounds, 2017, 718 (17): 478- 491.
8
DENG M , HÖCHE D , LAMAKA S V , et al. Mg-Ca binary alloys as anodes for primary Mg-air batteries[J]. Journal of Power Sources, 2018, 396, 109- 118.
doi: 10.1016/j.jpowsour.2018.05.090
9
LIU X , LIU S , XUE J . Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries[J]. Journal of Power Sources, 2018, 396, 667- 674.
doi: 10.1016/j.jpowsour.2018.06.085
10
SCHLOFFER D , BOZORGI S , SHERSTNEV P , et al. Manufacturing and characterization of magnesium alloy foils for use as anode materials in rechargeable magnesium ion batteries[J]. Journal of Power Sources, 2017, 367, 138- 144.
doi: 10.1016/j.jpowsour.2017.09.062
ZENG J , WU D Z , ZHUANG Y C , et al. Research progress in strategies for improving performance of cathode materials for magnesium batteries[J]. Journal of Materials Engineering, 2021, 49 (2): 10- 20.
12
LI L Y , CUI L Y , ZENG R C , et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys-a review[J]. Acta Biomater, 2018, 79, 23- 36.
doi: 10.1016/j.actbio.2018.08.030
13
PANEMANGALORE D B , SHABADI R , GUPTA M , et al. Effect of fluoride coatings on the corrosion behavior of Mg-Zn-Er alloys[J]. Surfaces and Interfaces, 2019, 14, 72- 81.
doi: 10.1016/j.surfin.2018.11.007
14
CHENG W L , MA S C , BAI Y , et al. Corrosion behavior of Mg-6Bi-2Sn alloy in the simulated body fluid solution: the influence of microstructural characteristics[J]. Journal of Alloys and Compounds, 2018, 731, 945- 954.
doi: 10.1016/j.jallcom.2017.10.073
WAN T , SONG S P , WANG J Z , et al. Research progress in corrosion behavior of biomedical magnesium alloys[J]. Journal of Materials Engineering, 2020, 48 (1): 19- 26.
16
NORDLIEN J H , ONO S , MASUKO N , et al. A TEM investigation of naturally formed oxide films on pure magnesium[J]. Corrosion Science, 1997, 39 (8): 1397- 1414.
doi: 10.1016/S0010-938X(97)00037-1
FUGGLE J C , WATSON L M , FABIAN D J , et al. X-ray photoelectron studies of the reaction of clean metals (Mg, Al, Cr, Mn) with oxygen and water vapour[J]. Surface Science, 1975, 49 (1): 61- 76.
doi: 10.1016/0039-6028(75)90328-3
19
YIN M , HOU L , LIU X , et al. Tailoring the micromorphology of the as-cast Mg-Sn-In alloys to corrosion-resistant microstructures via adjusting In concentration[J]. Journal of Alloys and Compounds, 2019, 811, 152024.
doi: 10.1016/j.jallcom.2019.152024
20
LIAO J , HOTTA M , MORI Y . Improved corrosion resistance of a high-strength Mg-Al-Mn-Ca magnesium alloy made by rapid solidification powder metallurgy[J]. Materials Science and Engineering: A, 2012, 544, 10- 20.
doi: 10.1016/j.msea.2012.02.046
21
ATRENS A , SONG G L , CAO F , et al. Advances in Mg corrosion and research suggestions[J]. Journal of Magnesium and Alloys, 2013, 1 (3): 177- 200.
doi: 10.1016/j.jma.2013.09.003
22
THOMAS S , MEDHEKAR N V , FRANKEL G S , et al. Corrosion mechanism and hydrogen evolution on Mg[J]. Current Opinion in Solid State and Materials Science, 2015, 19 (2): 85- 94.
doi: 10.1016/j.cossms.2014.09.005
23
LAMAKA S V , HÖCHE D , PETRAUSKAS R P , et al. A new concept for corrosion inhibition of magnesium: suppression of iron re-deposition[J]. Electrochemistry Communications, 2016, 62, 5- 8.
doi: 10.1016/j.elecom.2015.10.023
24
SONG Y , SHAN D , CHEN R , et al. Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy[J]. Corrosion Science, 2010, 52 (5): 1830- 1837.
doi: 10.1016/j.corsci.2010.02.017
25
MIAO H , HUANG H , SHI Y , et al. Effects of solution treatment before extrusion on the microstructure, mechanical properties and corrosion of Mg-Zn-Gd alloy in vitro[J]. Corrosion Science, 2017, 122, 90- 99.
doi: 10.1016/j.corsci.2017.01.001
26
YIN Z , CHEN Y , YAN H , et al. Effects of the second phases on corrosion resistance of AZ91-xGd alloys treated with ultrasonic vibration[J]. Journal of Alloys and Compounds, 2019, 783, 877- 885.
doi: 10.1016/j.jallcom.2019.01.002
27
HOU L , LI Y , SUN J , et al. Enhancement corrosion resistance of Mg Al layered double hydroxides films by anion-exchange mechanism on magnesium alloys[J]. Applied Surface Science, 2019, 487, 101- 108.
doi: 10.1016/j.apsusc.2019.05.048
28
ASCENCIO M , PEKGULERYUZ M , OMANOVIC S . Corrosion behaviour of polypyrrole-coated WE43 Mg alloy in a modified simulated body fluid solution[J]. Corrosion Science, 2018, 133, 261- 275.
doi: 10.1016/j.corsci.2018.01.044
29
MISKOVIC D M , POHL K , BIRBILIS N , et al. Formation of a phosphate conversion coating on bioresorbable Mg-based metallic glasses and its effect on corrosion performance[J]. Corrosion Science, 2017, 129, 214- 225.
doi: 10.1016/j.corsci.2017.10.014
30
YANG H , GUO X , WU G , et al. Electrodeposition of chemically and mechanically protective Al-coatings on AZ91D Mg alloy[J]. Corrosion Science, 2011, 53 (1): 381- 387.
doi: 10.1016/j.corsci.2010.09.047
31
YANG H , GUO X , CHEN X , et al. A homogenisation pre-treatment for adherent and corrosion-resistant Ni electroplated coatings on Mg-alloy AZ91D[J]. Corrosion Science, 2014, 79, 41- 49.
doi: 10.1016/j.corsci.2013.10.024
32
MOON S , NAM Y . Anodic oxidation of Mg-Sn alloys in alkaline solutions[J]. Corrosion Science, 2012, 65, 494- 501.
doi: 10.1016/j.corsci.2012.08.050
33
HOU L , DANG N , YANG H , et al. A combined inhibiting effect of sodium alginate and sodium phosphate on the corrosion of magnesium alloy AZ31 in NaCl solution[J]. Journal of the Electrochemical Society, 2016, 163 (8): C486- C494.
doi: 10.1149/2.0941608jes
34
MAKAR GL , KRUGER J . Corrosion of magnesium[J]. International Materials Reviews, 1993, 38 (3): 138- 153.
doi: 10.1179/imr.1993.38.3.138
XI X M . Theoretic analysis of preparation of ultramicro powder through multi-phase oxidation reduction[J]. Journal of Xinyu College, 2009, 14 (6): 12- 15.
doi: 10.3969/j.issn.2095-3054.2009.06.003
36
CAO F , SONG G L , ATRENS A . Corrosion and passivation of magnesium alloys[J]. Corrosion Science, 2016, 111, 835- 845.
doi: 10.1016/j.corsci.2016.05.041
37
PETTY R L , DAVIDSON A W , KLEINBERG J . The anodic oxidation of magnesium metal: evidence for the existence of unipositive magnesium1, 2[J]. Journal of the American Chemical Society, 1954, 76 (2): 363- 366.
doi: 10.1021/ja01631a013
38
ATRENS A , SONG G L , LIU M , et al. Review of recent developments in the field of magnesium corrosion[J]. Advanced Engineering Materials, 2015, 17 (4): 400- 453.
doi: 10.1002/adem.201400434
39
SONG G , ATRENS A . Understanding magnesium corrosion-a framework for improved alloy performance[J]. Advanced Engineering Materials, 2003, 5 (12): 837- 858.
doi: 10.1002/adem.200310405
40
SONG G , ATRENS A . Recent insights into the mechanism of magnesium corrosion and research suggestions[J]. Advanced Engineering Materials, 2007, 9 (3): 177- 183.
doi: 10.1002/adem.200600221
41
ATRENS A , LIU M , ZAINAL ABIDIN N I . Corrosion mechanism applicable to biodegradable magnesium implants[J]. Materials Science and Engineering: B, 2011, 176 (20): 1609- 1636.
doi: 10.1016/j.mseb.2010.12.017
42
BIRBILIS N , KING A D , THOMAS S , et al. Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution[J]. Electrochimica Acta, 2014, 132, 277- 283.
doi: 10.1016/j.electacta.2014.03.133
43
SALLEH S H , THOMAS S , YUWONO J A , et al. Enhanced hydrogen evolution on Mg (OH)2 covered Mg surfaces[J]. Electrochimica Acta, 2015, 161, 144- 152.
doi: 10.1016/j.electacta.2015.02.079
44
WILLIAMS G , BIRBILIS N , MCMURRAY H N . Controlling factors in localised corrosion morphologies observed for magnesium immersed in chloride containing electrolyte[J]. Faraday Discuss, 2015, 180, 313- 330.
doi: 10.1039/C4FD00268G
45
CURIONI M . The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging[J]. Electrochimica Acta, 2014, 120, 284- 292.
doi: 10.1016/j.electacta.2013.12.109
46
LYSNE D , THOMAS S , HURLEY M F , et al. On the Fe enrichment during anodic polarization of Mg and its impact on hydrogen evolution[J]. Journal of The Electrochemical Society, 2015, 162 (8): 396- 402.
doi: 10.1149/2.0251508jes
47
BIRBILIS N , CAIN T , LAIRD J S , et al. Nuclear microprobe analysis for determination of element enrichment following magnesium dissolution[J]. ECS Electrochemistry Letters, 2015, 4 (10): 34- 37.
doi: 10.1149/2.0081510eel
48
HÖCHE D , BLAWERT C , LAMAKA S V , et al. The effect of iron re-deposition on the corrosion of impurity-containing magnesium[J]. Physical Chemistry Chemical Physics, 2016, 18 (2): 1279- 1291.
doi: 10.1039/C5CP05577F
49
FRANKEL G S , SAMANIEGO A , BIRBILIS N . Evolution of hydrogen at dissolving magnesium surfaces[J]. Corrosion Science, 2013, 70, 104- 111.
doi: 10.1016/j.corsci.2013.01.017
50
WILLIAMS G , BIRBILIS N , MCMURRAY H N . The source of hydrogen evolved from a magnesium anode[J]. Electrochemistry Communications, 2013, 36, 1- 5.
doi: 10.1016/j.elecom.2013.08.023
51
FAJARDO S , FRANKEL G S . Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium[J]. Electrochimica Acta, 2015, 165, 255- 267.
doi: 10.1016/j.electacta.2015.03.021
52
GUSIEVA K , DAVIES C H J , SCULLY J R , et al. Corrosion of magnesium alloys: the role of alloying[J]. International Materials Reviews, 2014, 60 (3): 169- 194.
53
HU Z , LIU R L , KAIRY S K , et al. Effect of Sm additions on the microstructure and corrosion behavior of magnesium alloy AZ91[J]. Corrosion Science, 2019, 149, 144- 152.
doi: 10.1016/j.corsci.2019.01.024
54
CAO F F , DENG K K , NIE K B , et al. Microstructure and corrosion properties of Mg-4Zn-2Gd-0.5Ca alloy influenced by multidirectional forging[J]. Journal of Alloys and Compounds, 2019, 770, 1280- 1220.
55
SONG G L , ATAENS A , WU X L , et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride[J]. Corrosion Science, 1998, 40 (10): 1769- 1791.
doi: 10.1016/S0010-938X(98)00078-X
56
LIU X , YIN M , ZHANG S , et al. Corrosion behavior of the as-cast and as-solid solution Mg-Al-Ge alloy[J]. Materials, 2018, 11 (10): 1812- 1821.
doi: 10.3390/ma11101812
57
JIANG P , BLAWERT C , HOU R , et al. Microstructural influence on corrosion behavior of MgZnGe alloy in NaCl solution[J]. Journal of Alloys and Compounds, 2019, 783, 179- 192.
doi: 10.1016/j.jallcom.2018.12.296
58
FAN Y , WU G , ZHAI C . Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy[J]. Materials Science and Engineering: A, 2006, 433 (1): 208- 215.
59
ZHANG J , WANG J , QIU X , et al. Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg-4Al-based alloy[J]. Journal of Alloys and Compounds, 2008, 464 (1): 556- 564.
60
ZHANG J , NIU X , QIU X , et al. Effect of yttrium-rich misch metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy[J]. Journal of Alloys and Compounds, 2009, 471 (1): 322- 330.
61
MEN H , FAN Z . Effects of solute content on grain refinement in an isothermal melt[J]. Acta Materialia, 2011, 59 (7): 2704- 2712.
doi: 10.1016/j.actamat.2011.01.008
62
YANG J , PENG J , NYBERG E A , et al. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy[J]. Applied Surface Science, 2016, 369, 92- 100.
doi: 10.1016/j.apsusc.2016.01.283
63
CAO F , SHI Z , SONG G L , et al. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg-X alloys: X=Mn, Sn, Ca, Zn, Al, Zr, Si, Sr[J]. Corrosion Science, 2013, 76, 60- 97.
doi: 10.1016/j.corsci.2013.06.030
64
JEONG Y S , KIM W J . Enhancement of mechanical properties and corrosion resistance of Mg-Ca alloys through microstructural refinement by indirect extrusion[J]. Corrosion Science, 2014, 82, 392- 403.
doi: 10.1016/j.corsci.2014.01.041
65
KIM K H , NAM N D , KIM J G , et al. Effect of calcium addition on the corrosion behavior of Mg-5Al alloy[J]. Intermetallics, 2011, 19 (12): 1831- 1838.
doi: 10.1016/j.intermet.2011.07.024
66
MCNULTY R E , HANAWALT J D . Some corrosion characteristics of high purity magnesium alloys[J]. Transactions of the Electrochemical Society, 1942, 81 (1): 423- 433.
doi: 10.1149/1.3071389
67
SIMANJUNTAK S , CAVANAUGH M K , GANDEL D S , et al. The influence of iron, manganese, and zirconium on the corrosion of magnesium: an artificial neural network approach[J]. Corrosion, 2015, 71 (2): 199- 208.
doi: 10.5006/1467
68
NAM N D , MATHESH M , FORSYTH M , et al. Effect of manganese additions on the corrosion behavior of an extruded Mg-5Al based alloy[J]. Journal of Alloys and Compounds, 2012, 542, 199- 206.
doi: 10.1016/j.jallcom.2012.07.083
69
CANDAN S , UNAL M , KOC E , et al. Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy[J]. Journal of Alloys and Compounds, 2011, 509 (5): 1958- 1963.
doi: 10.1016/j.jallcom.2010.10.100
70
CHANG J W , FU P H , GUO X W , et al. The effects of heat treatment and zirconium on the corrosion behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy[J]. Corrosion Science, 2007, 49 (6): 2612- 2627.
doi: 10.1016/j.corsci.2006.12.011
71
BIRBILIS N , WILLIAMS G , GUSIEVA K , et al. Poisoning the corrosion of magnesium[J]. Electrochemistry Communications, 2013, 34, 295- 298.
doi: 10.1016/j.elecom.2013.07.021
72
LIU R L , HURLEY M F , KVRYAN A , et al. Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge[J]. Scientific Reports, 2016, 6, 28747.
doi: 10.1038/srep28747
73
LIU R L , ZENG Z R , SCULLY J R , et al. Simultaneously improving the corrosion resistance and strength of magnesium via low levels of Zn and Ge additions[J]. Corrosion Science, 2018, 140, 18- 29.
doi: 10.1016/j.corsci.2018.06.027
74
HA H Y , KANG J Y , YANG J , et al. Role of Sn in corrosion and passive behavior of extruded Mg-5wt%Sn alloy[J]. Corrosion Science, 2016, 102, 355- 362.
doi: 10.1016/j.corsci.2015.10.028
75
YANG J , YIM C D , YOU B S . Effects of Sn in α-Mg matrix on properties of surface films of Mg-xSn (x=0, 2, 5wt%) alloys[J]. Materials and Corrosion, 2016, 67 (5): 531- 541.
doi: 10.1002/maco.201508585
76
CAIN T W , GLOVER C F , SCULLY J R . The corrosion of solid solution Mg-Sn binary alloys in NaCl solutions[J]. Electrochimica Acta, 2019, 297, 564- 575.
doi: 10.1016/j.electacta.2018.11.118
77
METALNIKOV P , BEN-HAMU G , ELIEZER D , et al. Role of Sn in microstructure and corrosion behavior of new wrought Mg-5Al alloy[J]. Journal of Alloys and Compounds, 2019, 777, 835- 849.
doi: 10.1016/j.jallcom.2018.11.003
78
NAYYERI M J , KHOMAMIZADEH F . Effect of RE elements on the microstructural evolution of as cast and SIMA processed Mg-4Al alloy[J]. Journal of Alloys and Compounds, 2011, 509 (5): 1567- 1572.
doi: 10.1016/j.jallcom.2010.10.147
79
ARRABAL R , PARDO A , MERINO M C , et al. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5wt.% NaCl solution[J]. Corrosion Science, 2012, 55, 301- 312.
doi: 10.1016/j.corsci.2011.10.033
80
WU L , LI H . Effect of selective oxidation on corrosion behavior of Mg-Gd-Y-Zn-Zr alloy[J]. Corrosion Science, 2018, 142, 238- 248.
doi: 10.1016/j.corsci.2018.07.026
81
JIA R , YU S , LI D , et al. Study on the effect of mischmetal (La, Ce) on the micro-galvanic corrosion of AZ91 alloy using multiscale methods[J]. Journal of Alloys and Compounds, 2019, 778, 427- 438.
doi: 10.1016/j.jallcom.2018.11.030
82
HOU L , RAVEGGI M , CHEN X B , et al. Investigating the passivity and dissolution of a corrosion resistant Mg-33at.% Li alloy in aqueous chloride using online ICP-MS[J]. Journal of the Electrochemical Society, 2016, 163 (6): 324- 329.
doi: 10.1149/2.0871606jes
83
XU W , BIRBILIS N , SHA G , et al. A high-specific-strength and corrosion-resistant magnesium alloy[J]. Nat Mater, 2015, 14 (12): 1229- 1235.
doi: 10.1038/nmat4435
84
BAO T , HOU L , SUN J , et al. Effect of indium on the negative difference effect for magnesium alloy[J]. Journal of the Electrochemical Society, 2021, 168 (3): 031515.
doi: 10.1149/1945-7111/abee5c
85
ZHANG J L , LIU Y L , ZHOU J , et al. Kinetic study on the corrosion behavior of AM60 magnesium alloy with different Nd contents[J]. Journal of Alloys and Compounds, 2015, 629, 290- 296.
doi: 10.1016/j.jallcom.2014.12.143
86
HOMAYUN B , AFSHAR A . Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg-Zn-Al-Ca alloys as biodegradable materials[J]. Journal of Alloys and Compounds, 2014, 607, 1- 10.
doi: 10.1016/j.jallcom.2014.04.059
87
ALVAREZ-LOPEZ M , PEREDA M D , del VALLE J A , et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids[J]. Acta Biomater, 2010, 6 (5): 1763- 1771.
doi: 10.1016/j.actbio.2009.04.041