1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
Magnesium alloy has the advantages of low density, good damping and noise reduction and good electrical conductivity. It is the lightest metal structural material in applications. However, they are easily corroded due to the low potential of magnesium alloy electrodes, which limits their wide application in industry. At present, surface coating protection technology is one of the most effective methods to improve the corrosion resistance of magnesium alloys. Graphene oxide (GO) has excellent thermal, mechanical and barrier properties, and has broad application prospects in metal protection. GO-based composite coatings can provide a good physical barrier to corrosive media and have become one of the candidate materials for anti-corrosion coatings. In this article, the solutions were proposed for the limitations of single-component GO nanosheets, such as agglomeration and poor compatibility. The preparation methods, types and corrosion protection research progress of GO composite coatings were mainly summarized and its protection mechanism was analyzed in depth. Finally, the future development trend of GO application of magnesium alloy surface corrosion protection coating were prospected. The preparation methods and types of GO composite coatings on magnesium alloys were mainly described. The research progress and corrosion protection mechanism of GO coating on magnesium alloy were summarized.
SUN J L , LI S Y , XU H X , et al. Study on the self-healing properties of intercalated LDHS coating on magnesium alloy surface[J]. Rare Metal Materials and Engineering, 2020, 49 (12): 4236- 4245.
2
WU L , DING X X , ZHENG Z C , et al. Doublely-doped Mg-Al-Ce-V2O74- LDH composite film on magnesium alloy AZ31 for anticorrosion[J]. Journal of Materials Science & Technology, 2021, 64, 66- 72.
3
YANG H B , WU L , JIANG B , et al. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries[J]. Journal of Materials Science & Technology, 2021, 62, 128- 138.
ZHANG K M , JING X R , HE X J C , et al. Effect of Mn on microstructure and properties of Mg-4Zn wrought magnesium alloy[J]. Journal of Netshape Forming Engineering, 2020, 12 (5): 46- 52.
doi: 10.3969/j.issn.1674-6457.2020.05.005
5
CHEN J , WU L , DING X X , et al. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31[J]. Journal of Materials Science & Technology, 2019, 64, 10- 20.
6
ZHANG G , WU L , TANG A T , et al. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31[J]. Corrosion Science, 2018, 139, 370- 382.
doi: 10.1016/j.corsci.2018.05.010
HU B , LI D J , LI Z X , et al. Research progress on hot tearing behavior of cast magnesium alloys[J]. Journal of Netshape Forming Engineering, 2020, 12 (5): 1- 19.
doi: 10.3969/j.issn.1674-6457.2020.05.001
8
ZHANG G , WU L , TANG A T , et al. Growth behavior of MgAl-layered double hydroxide films by conversion of anodic films on magnesium alloy AZ31 and their corrosion protection[J]. Applied Surface Science, 2018, 456, 419- 429.
doi: 10.1016/j.apsusc.2018.06.085
9
WU L , YANG D N , ZHANG G , et al. Fabrication and characterization of Mg-M layered double hydroxide films on anodized magnesium alloy AZ31[J]. Applied Surface Science, 2017, 431, 177- 186.
PAN H C , WU H J , CHENG R S , et al. Effects of Al and Mn elements on microstructure and mechanical properties of Mg-2.5Sn-3.5Ca alloy[J]. Journal of Netshape Forming Engineering, 2020, 12 (5): 28- 36.
doi: 10.3969/j.issn.1674-6457.2020.05.003
11
WU J J , YUAN Y , YU X W , et al. The high-temperature oxidation resistance properties of magnesium alloys alloyed with Gd and Ca[J]. Journal of Materials Science, 2021, 56 (14): 8745- 8761.
doi: 10.1007/s10853-020-05758-1
12
WU L , WU J H , ZHANG Z Y , et al. Corrosion resistance of fatty acid and fluoroalkylsilane-modified hydrophobic Mg-Al LDH films on anodized magnesium alloy[J]. Applied Surface Science, 2019, 487, 569- 580.
doi: 10.1016/j.apsusc.2019.05.121
13
LI C Y , FAN X L , ZENG R C , et al. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31-influence of EDTA[J]. Journal of Materials Science & Technology, 2019, 35 (6): 1088- 1098.
14
CUI L Y , WEI G B , HAN Z Z , et al. In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy[J]. Journal of Materials Science & Technology, 2019, 35 (3): 254- 265.
15
WANG X , LI L X , XIE Z H , et al. Duplex coating combining layered double hydroxide and 8-quinolinol layers on Mg alloy for corrosion protection[J]. Electrochimica Acta, 2018, 283, 1845- 1857.
doi: 10.1016/j.electacta.2018.07.113
16
GUO L T , GU C D , FENG J , et al. Hydrophobic epoxy resin coating with ionic liquid conversion pretreatment on magnesium alloy for promoting corrosion resistance[J]. Journal of Materials Science & Technology, 2020, 37, 9- 18.
17
CHAI Y , SONG Y , JIANG B , et al. Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets[J]. Journal of Magnesium and Alloys, 2019, 7 (4): 545- 554.
doi: 10.1016/j.jma.2019.09.007
18
RESS J , MARTIN U , BOSCH J , et al. pH-triggered release of NaNO2 corrosion inhibitors from novel colophony microcapsules in simulated concrete pore solution[J]. ACS Applied Materials & Interfaces, 2020, 12 (41): 46686- 46700.
HONG M , WANG S L , CHEN Y , et al. Low-pressure plasma spraying technology and its research status[J]. Journal of Netshape Forming Engineering, 2020, 12 (3): 146- 153.
doi: 10.3969/j.issn.1674-6457.2020.03.018
20
ATTA A M , EZZAT A O , EL-SAEED A M , et al. Superhydrophobic organic and inorganic clay nanocomposites for epoxy steel coatings[J]. Progress in Organic Coatings, 2020, 140, 105502.
doi: 10.1016/j.porgcoat.2019.105502
21
RAMÍREZ-SORIA EH , LEÓN-SILVA U , REJÓN-GARCÍA L , et al. Super-anticorrosive materials based on bifunctionalized reduced graphene oxide[J]. ACS Applied Materials & Interfaces, 2020, 12 (40): 45254- 45265.
22
DIDEIKIN A T , VUL' A Y . Graphene oxide and derivatives: the place in graphene family[J]. Frontiers in Physics, 2019, 6, 149.
doi: 10.3389/fphy.2018.00149
23
DE SILVA K K H , HUANG H H , JOSHI R K , et al. Chemical reduction of graphene oxide using green reductants[J]. Carbon, 2017, 119, 190- 199.
doi: 10.1016/j.carbon.2017.04.025
YUAN Q H , LIU Y , ZHOU G H , et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes and graphene nanosheets[J]. Journal of Netshape Forming Engineering, 2020, 12 (5): 37- 45.
doi: 10.3969/j.issn.1674-6457.2020.05.004
25
CHEN L , CHEN Z , TANG X Y , et al. Friction at single-layer graphene step edges due to chemical and topographic interactions[J]. Carbon, 2019, 154, 67- 73.
doi: 10.1016/j.carbon.2019.07.081
26
NGUYEN HUYNH N M , BOEVA Z A , SMÅTT J H , et al. Reduced graphene oxide as a water, carbon dioxide and oxygen barrier in plasticized poly(vinyl chloride) films[J]. RSC Advances, 2018, 8 (32): 17645- 17655.
doi: 10.1039/C8RA03080D
27
GAO F , HU Y D , LI G C , et al. Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility[J]. Bioactive Materials, 2020, 5 (3): 611- 623.
doi: 10.1016/j.bioactmat.2020.04.016
28
FATHYUNES L , KHALIL-ALLAFI J , MOOSAVIFAR M . Development of graphene oxide/calcium phosphate coating by pulse electrodeposition on anodized titanium: biocorrosion and mechanical behavior[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 575- 586.
doi: 10.1016/j.jmbbm.2018.11.011
29
WANG Y , LI S S , YANG H Y , et al. Progress in the functional modification of graphene/graphene oxide: a review[J]. RSC Advances, 2020, 10 (26): 15328- 15345.
doi: 10.1039/D0RA01068E
30
SHUAI C J , WANG B , BIN S Z , et al. Interfacial strengthening by reduced graphene oxide coated with MgO in biodegradable Mg composites[J]. Materials & Design, 2020, 191, 108612.
31
LI N , ZHANG K , XIE K Y , et al. Reduced-graphene-oxide-guided directional growth of planar lithium layers[J]. Advanced Materials, 2020, 32 (7): 1907079.
doi: 10.1002/adma.201907079
32
GAO X J , GUAN B , MESLI A , et al. Toward defect-free doping by self-assembled molecular monolayers: the evolution of interstitial carbon-related defects in phosphorus-doped silicon[J]. ACS Omega, 2019, 4 (2): 3539- 3545.
doi: 10.1021/acsomega.8b03372
33
POURHASHEM S , VAEZI MR , RASHIDI A , et al. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings[J]. Progress in Organic Coatings, 2017, 111, 47- 56.
doi: 10.1016/j.porgcoat.2017.05.008
34
BOUKHVALOV D W , KATSNELSON M I . Modeling of graphite oxide[J]. Journal of The American Chemical Society, 2008, 130 (32): 10697.
doi: 10.1021/ja8021686
35
LERF A , HE H Y , FORSTER M , et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry B, 1998, 102 (23): 4477- 4482.
doi: 10.1021/jp9731821
36
HUMMERS W S , OFFEMAN R E . Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80 (6): 1339.
doi: 10.1021/ja01539a017
37
JIN T , XIE Z L , FULLSTON D , et al. Corrosion resistance of copolymerization of acrylamide and acrylic acid grafted graphene oxide composite coating on magnesium alloy[J]. Progress in Organic Coatings, 2019, 136, 105222.
doi: 10.1016/j.porgcoat.2019.105222
38
ZHANG Y Y , GONG S S , ZHANG Q , et al. Graphene-based artificial nacre nanocomposites[J]. Chemical Society Reviews, 2016, 45 (9): 2378- 2395.
doi: 10.1039/C5CS00258C
39
NI H , XU F Y , TOMSIA A P , et al. Robust bioinspired graphene film via π-π cross-linking[J]. ACS Applied Materials & Interfaces, 2017, 9 (29): 24987- 24992.
40
QI G Q , CAO J , BAO R Y , et al. Tuning the structure of graphene oxide and the properties of poly(vinyl alcohol)/graphene oxide nanocomposites by ultrasonication[J]. Journal of Materials Chemistry A, 2013, 1 (9): 3163- 3170.
doi: 10.1039/c3ta01360j
41
ZHANG L , WU H T , WEI M , et al. Preparation, characterization, and properties of graphene oxide/urushiol-formaldehyde polymer composite coating[J]. Journal of Coatings Technology and Research, 2018, 15 (6): 1343- 1356.
doi: 10.1007/s11998-018-0084-1
42
LV X S , QIN X F , WANG K F , et al. Nanoscale zero valent iron supported on MgAl-LDH-decorated reduced graphene oxide: enhanced performance in Cr(Ⅵ) removal, mechanism and regeneration[J]. Journal of Hazardous Materials, 2019, 373, 176- 186.
doi: 10.1016/j.jhazmat.2019.03.091
43
MA Y , DI H H , YU Z X , et al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research[J]. Applied Surface Science, 2016, 360, 936- 945.
doi: 10.1016/j.apsusc.2015.11.088
44
PARK J H , PARK J M . Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application[J]. Surface and Coatings Technology, 2014, 254, 167- 174.
doi: 10.1016/j.surfcoat.2014.06.007
45
SHANG W , WU F , WANG Y Y , et al. Corrosion resistance of micro-arc oxidation/graphene oxide composite coatings on magnesium alloys[J]. ACS Omega, 2020, 5 (13): 7262- 7270.
doi: 10.1021/acsomega.9b04060
46
MAQSOOD M F , RAZA M A , GHAURI F A , et al. Corrosion study of graphene oxide coatings on AZ31B magnesium alloy[J]. Journal of Coatings Technology and Research, 2020, 17 (5): 1321- 1329.
doi: 10.1007/s11998-020-00350-3
XIONG W , WANG H B , TAN X X , et al. Construction and Properties of dihydromyricetin terternary liposome[J]. Food Industry, 2017, 38 (12): 190- 193.
48
FAN F , ZHOU C Y , WANG X , et al. Layer-by-layer assembly of a self-healing anticorrosion coating on magnesium alloys[J]. ACS Applied Materials & Interfaces, 2015, 7 (49): 27271- 27278.
49
LONG Y , WU L , PAN F S , et al. A graphene spin coatings for cost-effective corrosion protection for the magnesium alloy AZ31[J]. Journal of Nanoscience and Nanotechnology, 2019, 19 (1): 105- 111.
doi: 10.1166/jnn.2019.16436
50
CHEN Y N , REN B H , GAO S Y , et al. The sandwich-like structures of polydopamine and 8-hydroxyquinoline coated graphene oxide for excellent corrosion resistance of epoxy coatings[J]. Journal of Colloid and Interface Science, 2020, 565, 436- 448.
doi: 10.1016/j.jcis.2020.01.051
51
WU Y Q , HE Y , CHEN C L , et al. Non-covalently functionalized boron nitride by graphene oxide for anticorrosive reinforcement of water-borne epoxy coating[J]. Colloids and Surfaces A, 2020, 587, 124337.
doi: 10.1016/j.colsurfa.2019.124337
52
LONG Y , WU L , PAN F S , et al. A graphene spin coatings for cost-effective corrosion protection for the magnesium alloy AZ31[J]. Journal of Nanoscience and Nanotechnology, 2019, 19 (1): 105- 111.
doi: 10.1166/jnn.2019.16436
53
YAN L , ZHOU M , PANG X L , et al. One-step in situ synthesis of reduced graphene oxide/Zn-Al layered double hydroxide film for enhanced corrosion protection of magnesium alloys[J]. Langmuir, 2019, 35 (19): 6312- 6320.
doi: 10.1021/acs.langmuir.9b00529
54
CHEN Y , LI J J , YANG W G , et al. Enhanced corrosion protective performance of graphene oxide-based composite films on AZ31 magnesium alloys in 3.5wt% NaCl solution[J]. Applied Surface Science, 2019, 493, 1224- 1235.
doi: 10.1016/j.apsusc.2019.07.101
55
WANG D , BIERWAGEN G P . Sol-gel coatings on metals for corrosion protection[J]. Progress in Organic Coatings, 2009, 64 (4): 327- 338.
doi: 10.1016/j.porgcoat.2008.08.010
56
TONG L B , ZHANG J B , XU C , et al. Enhanced corrosion and wear resistances by graphene oxide coating on the surface of Mg-Zn-Ca alloy[J]. Carbon, 2016, 109, 340- 351.
doi: 10.1016/j.carbon.2016.08.032
57
XUE B , YU M , LIU J J , et al. Corrosion protection of AA2024-T3 by sol-gel film modified with graphene oxide[J]. Journal of Alloys and Compounds, 2017, 725, 84- 95.
doi: 10.1016/j.jallcom.2017.05.091
58
LIU T , CHEN S G , CHENG S , et al. Corrosion behavior of super-hydrophobic surface on copper in seawater[J]. Electrochimica Acta, 2007, 52 (28): 8003- 8007.
doi: 10.1016/j.electacta.2007.06.072
59
IKHE A B , KALE A B , JEONG J , et al. Perfluorinated polysiloxane hybridized with graphene oxide for corrosion inhibition of AZ31 magnesium alloy[J]. Corrosion Science, 2016, 109, 238- 245.
doi: 10.1016/j.corsci.2016.04.010
60
CHEN Y N , WU L , YAO W H , et al. One-step in situ synthesis of graphene oxide/MgAl-layered double hydroxide coating on a micro-arc oxidation coating for enhanced corrosion protection of magnesium alloys[J]. Surface and Coatings Technology, 2021, 413, 127083.
doi: 10.1016/j.surfcoat.2021.127083
61
ALHUMADE H , ABDALA A , YU A , et al. Corrosion inhibition of copper in sodium chloride solution using polyetherimide/graphene composites[J]. The Canadian Journal of Chemical Engineering, 2016, 94 (5): 896- 904.
doi: 10.1002/cjce.22439
62
CATT K , LI H X , CUI X T . Poly (3, 4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion[J]. Acta Biomaterialia, 2017, 48, 530- 540.
doi: 10.1016/j.actbio.2016.11.039
63
SINGH B P , JENA B K , BHATTACHARJEE S , et al. Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper[J]. Surface and Coatings Technology, 2013, 232, 475- 581.
doi: 10.1016/j.surfcoat.2013.06.004
64
FATHYUNES L , KHALIL-ALLAFI J . The effect of graphene oxide on surface features, biological performance and bio-stability of calcium phosphate coating applied by pulse electrochemical deposition[J]. Applied Surface Science, 2018, 437, 122- 135.
doi: 10.1016/j.apsusc.2017.12.133
65
CHEN C L , HE Y , XIAO G Q , et al. Synergistic effect of graphene oxide@phosphate intercalated hydrotalcite for improved anti-corrosion and self-healable protection of waterborne epoxy coating in salt environments[J]. Journal of Materials Chemistry C, 2019, 7 (8): 2318- 2326.
doi: 10.1039/C8TC06487C
66
ZHAO M , DAI Y K , LI X B , et al. Evaluation of long-term biocompatibility and osteogenic differentiation of graphene nanosheet doped calcium phosphate-chitosan AZ91D composites[J]. Materials Science and Engineering: C, 2018, 90, 365- 378.
doi: 10.1016/j.msec.2018.04.082