Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (12): 1-13    DOI: 10.11868/j.issn.1001-4381.2021.000291
  镁合金腐蚀与防护专栏 本期目录 | 过刊浏览 | 高级检索 |
镁合金表面氧化石墨烯复合涂层的研究现状
陈燕宁1,2, 吴量1,2,*(), 陈勇花1,2, 程苓1,2, 姚文辉1,2, 潘复生1,2
1 重庆大学 材料科学与工程学院, 重庆 400044
2 重庆大学 国家镁合金工程研究中心, 重庆 400044
Research status of graphene oxide composite coatings on magnesium alloys
Yan-ning CHEN1,2, Liang WU1,2,*(), Yong-hua CHEN1,2, Ling CHENG1,2, Wen-hui YAO1,2, Fu-sheng PAN1,2
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
全文: PDF(19911 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

镁合金具有密度小、阻尼减振降噪性好和导电性好等优点,是目前工程应用中最轻的金属结构材料。但镁合金电极电位低、易腐蚀的缺点,限制了其在工业上的应用。目前,表面涂层防护技术是提高镁合金耐腐蚀性最有效的方法之一。氧化石墨烯(GO)因具有显著的热学和阻挡性能,在金属保护等方面具有广阔的应用前景。基于GO设计的涂层可以对腐蚀性介质提供良好的物理屏障,已成为防腐蚀涂层的候选材料之一。本文对单一组分的GO纳米片本身存在团聚和相容性差等局限性问题提出了解决方案。主要回顾了GO复合涂层制备方法和类型,总结了在镁合金防腐领域的最新研究进展,并深入分析了其保护机理。最后,对GO运用到的镁合金表面腐蚀防护涂层的未来发展趋势进行展望。重点阐述了镁合金表面氧化石墨烯复合涂层的制备方式以及种类,综合说明了镁合金表面氧化石墨烯涂层的研究进展以及腐蚀保护机制。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈燕宁
吴量
陈勇花
程苓
姚文辉
潘复生
关键词 镁合金氧化石墨烯腐蚀防护涂层    
Abstract

Magnesium alloy has the advantages of low density, good damping and noise reduction and good electrical conductivity. It is the lightest metal structural material in applications. However, they are easily corroded due to the low potential of magnesium alloy electrodes, which limits their wide application in industry. At present, surface coating protection technology is one of the most effective methods to improve the corrosion resistance of magnesium alloys. Graphene oxide (GO) has excellent thermal, mechanical and barrier properties, and has broad application prospects in metal protection. GO-based composite coatings can provide a good physical barrier to corrosive media and have become one of the candidate materials for anti-corrosion coatings. In this article, the solutions were proposed for the limitations of single-component GO nanosheets, such as agglomeration and poor compatibility. The preparation methods, types and corrosion protection research progress of GO composite coatings were mainly summarized and its protection mechanism was analyzed in depth. Finally, the future development trend of GO application of magnesium alloy surface corrosion protection coating were prospected. The preparation methods and types of GO composite coatings on magnesium alloys were mainly described. The research progress and corrosion protection mechanism of GO coating on magnesium alloy were summarized.

Key wordsmagnesium alloy    graphene oxide    corrosion prevention    coating
收稿日期: 2021-03-31      出版日期: 2021-12-20
中图分类号:  TG178  
基金资助:国家自然科学基金项目(51971040);国家自然科学基金项目(52171101);国家自然科学基金项目(52001036);国家自然科学基金项目(51971044);中央高校基本科研业务费专项资金(2020CDJQY-A007)
通讯作者: 吴量     E-mail: wuliang@cqu.edu.cn
作者简介: 吴量(1985-), 男, 副教授, 博士, 主要从事镁合金表面腐蚀与防护工作, 联系地址: 重庆市沙坪坝区重庆大学A区综合实验大楼(400044), E-mail: wuliang@cqu.edu.cn
引用本文:   
陈燕宁, 吴量, 陈勇花, 程苓, 姚文辉, 潘复生. 镁合金表面氧化石墨烯复合涂层的研究现状[J]. 材料工程, 2021, 49(12): 1-13.
Yan-ning CHEN, Liang WU, Yong-hua CHEN, Ling CHENG, Wen-hui YAO, Fu-sheng PAN. Research status of graphene oxide composite coatings on magnesium alloys. Journal of Materials Engineering, 2021, 49(12): 1-13.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000291      或      http://jme.biam.ac.cn/CN/Y2021/V49/I12/1
Fig.1  氧化石墨烯结构模型[33]
Fig.2  镁合金表面氧化石墨烯复合涂层制备方式以及截面形貌[44-45]
(a)电泳沉积法;(b)MAO/GO复合涂层截面形貌
Fig.3  镁合金表面层层自组装制备氧化石墨烯复合涂层[48]
Coating Substrate Method Corrosion currentdensity/(A·cm-2) Advantage Reference
MAO/GO coating AZ91 magnesium alloy Electrophoretic deposition 1.39×10-5 Improved corrosion resistance [45]
Ce(Ⅳ)/PEI/GO/(PEI/PAA) 10 AZ31 magnesium alloy Layer by layer Improved corrosion resistance [48]
G-coating AZ31 magnesium alloy Spin-coating 1.50×10-7 Improved corrosion resistance [49]
GO/8-HQ/PDA-EP AZ31 magnesium alloy Coating 1.01×10-7 Good corrosion resistance [50]
rGO/Zn-Al LDH film AZ91D magnesium alloy Hydrothermal 5.46×10-7 Good corrosion resistance [53]
CeO2/(PEI/CMC@GO) 10 film AZ31 magnesium alloy Layer by layer 5.07×10-6 Improved corrosion resistance [54]
Table 1  镁合金表面不同氧化石墨烯复合涂层的制备方法及优点列表
Fig.4  AZ31镁合金表面超疏水复合涂层形成方式以及表面形貌[59]
(a)PPFS/GO合成的示意图;(b)GO和PPFS/GO的FESEM图像
Fig.5  微弧氧化复合涂层表面低倍和高倍SEM形貌图[60]
(a)MAO涂层;(b)LDH-MAO涂层;(c)GO/LDH-MAO涂层
Fig.6  聚合物复合涂层表面形貌[62]
(a)腐蚀前涂有PEDOT/GO的样品;(b)未经处理的镁基体表面; (c)PEDOT/GO涂层的高倍率图像;(d)腐蚀后在PEDOT/GO涂层样品上的分层区域;(e)腐蚀后未涂覆的镁基体;(f)腐蚀后PEDOT/GO膜中出现裂纹的图像
Fig.7  磷酸盐复合涂层横截面FESEM形貌图[64]
(a)CaP涂层样品; (b)GO-CaP涂层样品; (c)图(a)圆圈区域的放大图
Fig.8  在水中不同膜层的自愈室验[48]
(a)不含氧化石墨烯聚合物膜层的切口;(b)不含氧化石墨烯聚合物膜层浸泡10 min后在水中愈合的表面;(c)含氧化石墨烯聚合物膜层的切口;(d)含氧化石墨烯聚合物膜层浸泡10 min后在水中愈合的表面
Coating Substrate Coating type Advantage Reference
PPFS/GO AZ31 magnesium alloy Super-hydrophobic Improved corrosion resistance,super-hydrophobicity [59]
Mg/APTES/GO Mg-5.7Zn-0.8Ca alloy Sol-gel Improved corrosion resistance,bonding ability [56]
GO/LDH-MAO AZ31 magnesium alloy Micro-arc oxidation Improved corrosion resistance,hole sealing [60]
PEDOT/GO Magnesium ribbon Polymer Improved corrosion resistance,high stability [62]
GNS-CaP-CS/AZ91D AZ91D magnesium alloy Phosphate Good corrosion resistance,strong adhesion [66]
Ce(Ⅳ)/PEI/GO/(PEI/PAA) 10 AZ31 magnesium alloy Self-reparing Improved corrosion resistance [48]
GO/8-HQ/PDA-EP AZ31 magnesium alloy Self-reparing Improved corrosion resistance [50]
Table 2  镁合金表面不同种类氧化石墨烯复合涂层的优点
1 孙俊丽, 李思远, 许恒旭, 等. 镁合金表面缓蚀剂插层LDHs涂层自愈合性能的研究[J]. 稀有金属材料与工程, 2020, 49 (12): 4236- 4245.
1 SUN J L , LI S Y , XU H X , et al. Study on the self-healing properties of intercalated LDHS coating on magnesium alloy surface[J]. Rare Metal Materials and Engineering, 2020, 49 (12): 4236- 4245.
2 WU L , DING X X , ZHENG Z C , et al. Doublely-doped Mg-Al-Ce-V2O74- LDH composite film on magnesium alloy AZ31 for anticorrosion[J]. Journal of Materials Science & Technology, 2021, 64, 66- 72.
3 YANG H B , WU L , JIANG B , et al. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries[J]. Journal of Materials Science & Technology, 2021, 62, 128- 138.
4 张坤敏, 敬学锐, 何雄江川, 等. Mn对Mg-4Zn变形镁合金组织与性能的影响[J]. 精密成形工程, 2020, 12 (5): 46- 52.
doi: 10.3969/j.issn.1674-6457.2020.05.005
4 ZHANG K M , JING X R , HE X J C , et al. Effect of Mn on microstructure and properties of Mg-4Zn wrought magnesium alloy[J]. Journal of Netshape Forming Engineering, 2020, 12 (5): 46- 52.
doi: 10.3969/j.issn.1674-6457.2020.05.005
5 CHEN J , WU L , DING X X , et al. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31[J]. Journal of Materials Science & Technology, 2019, 64, 10- 20.
6 ZHANG G , WU L , TANG A T , et al. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31[J]. Corrosion Science, 2018, 139, 370- 382.
doi: 10.1016/j.corsci.2018.05.010
7 胡波, 李德江, 李子昕, 等. 铸造镁合金热裂行为的研究进展[J]. 精密成形工程, 2020, 12 (5): 1- 19.
doi: 10.3969/j.issn.1674-6457.2020.05.001
7 HU B , LI D J , LI Z X , et al. Research progress on hot tearing behavior of cast magnesium alloys[J]. Journal of Netshape Forming Engineering, 2020, 12 (5): 1- 19.
doi: 10.3969/j.issn.1674-6457.2020.05.001
8 ZHANG G , WU L , TANG A T , et al. Growth behavior of MgAl-layered double hydroxide films by conversion of anodic films on magnesium alloy AZ31 and their corrosion protection[J]. Applied Surface Science, 2018, 456, 419- 429.
doi: 10.1016/j.apsusc.2018.06.085
9 WU L , YANG D N , ZHANG G , et al. Fabrication and characterization of Mg-M layered double hydroxide films on anodized magnesium alloy AZ31[J]. Applied Surface Science, 2017, 431, 177- 186.
10 潘虎成, 武华健, 程仁山, 等. Al、Mn元素对Mg-2.5Sn-3.5Ca合金微观组织与力学性能的影响[J]. 精密成形工程, 2020, 12 (5): 28- 36.
doi: 10.3969/j.issn.1674-6457.2020.05.003
10 PAN H C , WU H J , CHENG R S , et al. Effects of Al and Mn elements on microstructure and mechanical properties of Mg-2.5Sn-3.5Ca alloy[J]. Journal of Netshape Forming Engineering, 2020, 12 (5): 28- 36.
doi: 10.3969/j.issn.1674-6457.2020.05.003
11 WU J J , YUAN Y , YU X W , et al. The high-temperature oxidation resistance properties of magnesium alloys alloyed with Gd and Ca[J]. Journal of Materials Science, 2021, 56 (14): 8745- 8761.
doi: 10.1007/s10853-020-05758-1
12 WU L , WU J H , ZHANG Z Y , et al. Corrosion resistance of fatty acid and fluoroalkylsilane-modified hydrophobic Mg-Al LDH films on anodized magnesium alloy[J]. Applied Surface Science, 2019, 487, 569- 580.
doi: 10.1016/j.apsusc.2019.05.121
13 LI C Y , FAN X L , ZENG R C , et al. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31-influence of EDTA[J]. Journal of Materials Science & Technology, 2019, 35 (6): 1088- 1098.
14 CUI L Y , WEI G B , HAN Z Z , et al. In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy[J]. Journal of Materials Science & Technology, 2019, 35 (3): 254- 265.
15 WANG X , LI L X , XIE Z H , et al. Duplex coating combining layered double hydroxide and 8-quinolinol layers on Mg alloy for corrosion protection[J]. Electrochimica Acta, 2018, 283, 1845- 1857.
doi: 10.1016/j.electacta.2018.07.113
16 GUO L T , GU C D , FENG J , et al. Hydrophobic epoxy resin coating with ionic liquid conversion pretreatment on magnesium alloy for promoting corrosion resistance[J]. Journal of Materials Science & Technology, 2020, 37, 9- 18.
17 CHAI Y , SONG Y , JIANG B , et al. Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets[J]. Journal of Magnesium and Alloys, 2019, 7 (4): 545- 554.
doi: 10.1016/j.jma.2019.09.007
18 RESS J , MARTIN U , BOSCH J , et al. pH-triggered release of NaNO2 corrosion inhibitors from novel colophony microcapsules in simulated concrete pore solution[J]. ACS Applied Materials & Interfaces, 2020, 12 (41): 46686- 46700.
19 洪敏, 王善林, 陈宜, 等. 低压等离子喷涂技术及研究现状[J]. 精密成形工程, 2020, 12 (3): 146- 153.
doi: 10.3969/j.issn.1674-6457.2020.03.018
19 HONG M , WANG S L , CHEN Y , et al. Low-pressure plasma spraying technology and its research status[J]. Journal of Netshape Forming Engineering, 2020, 12 (3): 146- 153.
doi: 10.3969/j.issn.1674-6457.2020.03.018
20 ATTA A M , EZZAT A O , EL-SAEED A M , et al. Superhydrophobic organic and inorganic clay nanocomposites for epoxy steel coatings[J]. Progress in Organic Coatings, 2020, 140, 105502.
doi: 10.1016/j.porgcoat.2019.105502
21 RAMÍREZ-SORIA EH , LEÓN-SILVA U , REJÓN-GARCÍA L , et al. Super-anticorrosive materials based on bifunctionalized reduced graphene oxide[J]. ACS Applied Materials & Interfaces, 2020, 12 (40): 45254- 45265.
22 DIDEIKIN A T , VUL' A Y . Graphene oxide and derivatives: the place in graphene family[J]. Frontiers in Physics, 2019, 6, 149.
doi: 10.3389/fphy.2018.00149
23 DE SILVA K K H , HUANG H H , JOSHI R K , et al. Chemical reduction of graphene oxide using green reductants[J]. Carbon, 2017, 119, 190- 199.
doi: 10.1016/j.carbon.2017.04.025
24 袁秋红, 刘勇, 周国华, 等. 碳纳米管和石墨烯纳米片复合增强AZ91镁基复合材料组织与力学性能[J]. 精密成形工程, 2020, 12 (5): 37- 45.
doi: 10.3969/j.issn.1674-6457.2020.05.004
24 YUAN Q H , LIU Y , ZHOU G H , et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes and graphene nanosheets[J]. Journal of Netshape Forming Engineering, 2020, 12 (5): 37- 45.
doi: 10.3969/j.issn.1674-6457.2020.05.004
25 CHEN L , CHEN Z , TANG X Y , et al. Friction at single-layer graphene step edges due to chemical and topographic interactions[J]. Carbon, 2019, 154, 67- 73.
doi: 10.1016/j.carbon.2019.07.081
26 NGUYEN HUYNH N M , BOEVA Z A , SMÅTT J H , et al. Reduced graphene oxide as a water, carbon dioxide and oxygen barrier in plasticized poly(vinyl chloride) films[J]. RSC Advances, 2018, 8 (32): 17645- 17655.
doi: 10.1039/C8RA03080D
27 GAO F , HU Y D , LI G C , et al. Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility[J]. Bioactive Materials, 2020, 5 (3): 611- 623.
doi: 10.1016/j.bioactmat.2020.04.016
28 FATHYUNES L , KHALIL-ALLAFI J , MOOSAVIFAR M . Development of graphene oxide/calcium phosphate coating by pulse electrodeposition on anodized titanium: biocorrosion and mechanical behavior[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 575- 586.
doi: 10.1016/j.jmbbm.2018.11.011
29 WANG Y , LI S S , YANG H Y , et al. Progress in the functional modification of graphene/graphene oxide: a review[J]. RSC Advances, 2020, 10 (26): 15328- 15345.
doi: 10.1039/D0RA01068E
30 SHUAI C J , WANG B , BIN S Z , et al. Interfacial strengthening by reduced graphene oxide coated with MgO in biodegradable Mg composites[J]. Materials & Design, 2020, 191, 108612.
31 LI N , ZHANG K , XIE K Y , et al. Reduced-graphene-oxide-guided directional growth of planar lithium layers[J]. Advanced Materials, 2020, 32 (7): 1907079.
doi: 10.1002/adma.201907079
32 GAO X J , GUAN B , MESLI A , et al. Toward defect-free doping by self-assembled molecular monolayers: the evolution of interstitial carbon-related defects in phosphorus-doped silicon[J]. ACS Omega, 2019, 4 (2): 3539- 3545.
doi: 10.1021/acsomega.8b03372
33 POURHASHEM S , VAEZI MR , RASHIDI A , et al. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings[J]. Progress in Organic Coatings, 2017, 111, 47- 56.
doi: 10.1016/j.porgcoat.2017.05.008
34 BOUKHVALOV D W , KATSNELSON M I . Modeling of graphite oxide[J]. Journal of The American Chemical Society, 2008, 130 (32): 10697.
doi: 10.1021/ja8021686
35 LERF A , HE H Y , FORSTER M , et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry B, 1998, 102 (23): 4477- 4482.
doi: 10.1021/jp9731821
36 HUMMERS W S , OFFEMAN R E . Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80 (6): 1339.
doi: 10.1021/ja01539a017
37 JIN T , XIE Z L , FULLSTON D , et al. Corrosion resistance of copolymerization of acrylamide and acrylic acid grafted graphene oxide composite coating on magnesium alloy[J]. Progress in Organic Coatings, 2019, 136, 105222.
doi: 10.1016/j.porgcoat.2019.105222
38 ZHANG Y Y , GONG S S , ZHANG Q , et al. Graphene-based artificial nacre nanocomposites[J]. Chemical Society Reviews, 2016, 45 (9): 2378- 2395.
doi: 10.1039/C5CS00258C
39 NI H , XU F Y , TOMSIA A P , et al. Robust bioinspired graphene film via π-π cross-linking[J]. ACS Applied Materials & Interfaces, 2017, 9 (29): 24987- 24992.
40 QI G Q , CAO J , BAO R Y , et al. Tuning the structure of graphene oxide and the properties of poly(vinyl alcohol)/graphene oxide nanocomposites by ultrasonication[J]. Journal of Materials Chemistry A, 2013, 1 (9): 3163- 3170.
doi: 10.1039/c3ta01360j
41 ZHANG L , WU H T , WEI M , et al. Preparation, characterization, and properties of graphene oxide/urushiol-formaldehyde polymer composite coating[J]. Journal of Coatings Technology and Research, 2018, 15 (6): 1343- 1356.
doi: 10.1007/s11998-018-0084-1
42 LV X S , QIN X F , WANG K F , et al. Nanoscale zero valent iron supported on MgAl-LDH-decorated reduced graphene oxide: enhanced performance in Cr(Ⅵ) removal, mechanism and regeneration[J]. Journal of Hazardous Materials, 2019, 373, 176- 186.
doi: 10.1016/j.jhazmat.2019.03.091
43 MA Y , DI H H , YU Z X , et al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research[J]. Applied Surface Science, 2016, 360, 936- 945.
doi: 10.1016/j.apsusc.2015.11.088
44 PARK J H , PARK J M . Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application[J]. Surface and Coatings Technology, 2014, 254, 167- 174.
doi: 10.1016/j.surfcoat.2014.06.007
45 SHANG W , WU F , WANG Y Y , et al. Corrosion resistance of micro-arc oxidation/graphene oxide composite coatings on magnesium alloys[J]. ACS Omega, 2020, 5 (13): 7262- 7270.
doi: 10.1021/acsomega.9b04060
46 MAQSOOD M F , RAZA M A , GHAURI F A , et al. Corrosion study of graphene oxide coatings on AZ31B magnesium alloy[J]. Journal of Coatings Technology and Research, 2020, 17 (5): 1321- 1329.
doi: 10.1007/s11998-020-00350-3
47 熊伟, 王慧宾, 谭潇啸, 等. 载二氢杨梅素三元复合脂质体的构建及其性能研究[J]. 食品工业, 2017, 38 (12): 190- 193.
47 XIONG W , WANG H B , TAN X X , et al. Construction and Properties of dihydromyricetin terternary liposome[J]. Food Industry, 2017, 38 (12): 190- 193.
48 FAN F , ZHOU C Y , WANG X , et al. Layer-by-layer assembly of a self-healing anticorrosion coating on magnesium alloys[J]. ACS Applied Materials & Interfaces, 2015, 7 (49): 27271- 27278.
49 LONG Y , WU L , PAN F S , et al. A graphene spin coatings for cost-effective corrosion protection for the magnesium alloy AZ31[J]. Journal of Nanoscience and Nanotechnology, 2019, 19 (1): 105- 111.
doi: 10.1166/jnn.2019.16436
50 CHEN Y N , REN B H , GAO S Y , et al. The sandwich-like structures of polydopamine and 8-hydroxyquinoline coated graphene oxide for excellent corrosion resistance of epoxy coatings[J]. Journal of Colloid and Interface Science, 2020, 565, 436- 448.
doi: 10.1016/j.jcis.2020.01.051
51 WU Y Q , HE Y , CHEN C L , et al. Non-covalently functionalized boron nitride by graphene oxide for anticorrosive reinforcement of water-borne epoxy coating[J]. Colloids and Surfaces A, 2020, 587, 124337.
doi: 10.1016/j.colsurfa.2019.124337
52 LONG Y , WU L , PAN F S , et al. A graphene spin coatings for cost-effective corrosion protection for the magnesium alloy AZ31[J]. Journal of Nanoscience and Nanotechnology, 2019, 19 (1): 105- 111.
doi: 10.1166/jnn.2019.16436
53 YAN L , ZHOU M , PANG X L , et al. One-step in situ synthesis of reduced graphene oxide/Zn-Al layered double hydroxide film for enhanced corrosion protection of magnesium alloys[J]. Langmuir, 2019, 35 (19): 6312- 6320.
doi: 10.1021/acs.langmuir.9b00529
54 CHEN Y , LI J J , YANG W G , et al. Enhanced corrosion protective performance of graphene oxide-based composite films on AZ31 magnesium alloys in 3.5wt% NaCl solution[J]. Applied Surface Science, 2019, 493, 1224- 1235.
doi: 10.1016/j.apsusc.2019.07.101
55 WANG D , BIERWAGEN G P . Sol-gel coatings on metals for corrosion protection[J]. Progress in Organic Coatings, 2009, 64 (4): 327- 338.
doi: 10.1016/j.porgcoat.2008.08.010
56 TONG L B , ZHANG J B , XU C , et al. Enhanced corrosion and wear resistances by graphene oxide coating on the surface of Mg-Zn-Ca alloy[J]. Carbon, 2016, 109, 340- 351.
doi: 10.1016/j.carbon.2016.08.032
57 XUE B , YU M , LIU J J , et al. Corrosion protection of AA2024-T3 by sol-gel film modified with graphene oxide[J]. Journal of Alloys and Compounds, 2017, 725, 84- 95.
doi: 10.1016/j.jallcom.2017.05.091
58 LIU T , CHEN S G , CHENG S , et al. Corrosion behavior of super-hydrophobic surface on copper in seawater[J]. Electrochimica Acta, 2007, 52 (28): 8003- 8007.
doi: 10.1016/j.electacta.2007.06.072
59 IKHE A B , KALE A B , JEONG J , et al. Perfluorinated polysiloxane hybridized with graphene oxide for corrosion inhibition of AZ31 magnesium alloy[J]. Corrosion Science, 2016, 109, 238- 245.
doi: 10.1016/j.corsci.2016.04.010
60 CHEN Y N , WU L , YAO W H , et al. One-step in situ synthesis of graphene oxide/MgAl-layered double hydroxide coating on a micro-arc oxidation coating for enhanced corrosion protection of magnesium alloys[J]. Surface and Coatings Technology, 2021, 413, 127083.
doi: 10.1016/j.surfcoat.2021.127083
61 ALHUMADE H , ABDALA A , YU A , et al. Corrosion inhibition of copper in sodium chloride solution using polyetherimide/graphene composites[J]. The Canadian Journal of Chemical Engineering, 2016, 94 (5): 896- 904.
doi: 10.1002/cjce.22439
62 CATT K , LI H X , CUI X T . Poly (3, 4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion[J]. Acta Biomaterialia, 2017, 48, 530- 540.
doi: 10.1016/j.actbio.2016.11.039
63 SINGH B P , JENA B K , BHATTACHARJEE S , et al. Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper[J]. Surface and Coatings Technology, 2013, 232, 475- 581.
doi: 10.1016/j.surfcoat.2013.06.004
64 FATHYUNES L , KHALIL-ALLAFI J . The effect of graphene oxide on surface features, biological performance and bio-stability of calcium phosphate coating applied by pulse electrochemical deposition[J]. Applied Surface Science, 2018, 437, 122- 135.
doi: 10.1016/j.apsusc.2017.12.133
65 CHEN C L , HE Y , XIAO G Q , et al. Synergistic effect of graphene oxide@phosphate intercalated hydrotalcite for improved anti-corrosion and self-healable protection of waterborne epoxy coating in salt environments[J]. Journal of Materials Chemistry C, 2019, 7 (8): 2318- 2326.
doi: 10.1039/C8TC06487C
66 ZHAO M , DAI Y K , LI X B , et al. Evaluation of long-term biocompatibility and osteogenic differentiation of graphene nanosheet doped calcium phosphate-chitosan AZ91D composites[J]. Materials Science and Engineering: C, 2018, 90, 365- 378.
doi: 10.1016/j.msec.2018.04.082
[1] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[2] 夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
[3] 王露, 陈雷雷, 徐凯, 娄明, 杜玉洁, 毛勇, 常可可. 前过渡族元素X对TiAlXN涂层结构与性能的作用[J]. 材料工程, 2022, 50(7): 69-79.
[4] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[5] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[6] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[7] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[8] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[9] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[10] 陈倩, 赵雪阳, 尤德强, 曾戎, 于振涛, 李卫, 王小健. 3D打印纯钛骨支架表面掺银介孔生物活性玻璃涂层的性能研究[J]. 材料工程, 2022, 50(11): 34-45.
[11] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[12] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[13] 余芳, 胡晓婧, 唐其金, 夏雨飘, 吕中, 杨浩. 具有可逆润湿性Bi2O3涂层在抗菌和油水分离中的应用[J]. 材料工程, 2021, 49(9): 167-174.
[14] 李红, 韩祎, 曹健, MARIUSZ Bober, JACEK Senkara. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1-10.
[15] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn