Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (12): 14-27    DOI: 10.11868/j.issn.1001-4381.2021.000292
  镁合金腐蚀与防护专栏 本期目录 | 过刊浏览 | 高级检索 |
生物医用镁合金耐腐蚀性能研究进展
汪荣香1,2, 洪立鑫1,2, 章晓波1,2,*()
1 南京工程学院 材料科学与工程学院, 南京 211167
2 江苏省先进结构材料与应用技术重点实验室, 南京 211167
Research progress in corrosion resistance of biomedical magnesium alloys
Rong-xiang WANG1,2, Li-xin HONG1,2, Xiao-bo ZHANG1,2,*()
1 School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
2 Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167, China
全文: PDF(19404 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

生物医用镁合金具有高比强度、低密度、合适的弹性模量、可降解性、良好的生物相容性及生物力学相容性等优点,在骨科固定和心血管支架等领域具有广泛的临床应用前景。然而,由于镁合金腐蚀过快和不均匀腐蚀等问题,易导致其过早丧失力学完整性,从而限制了其在承重部位的临床应用。本文从镁合金腐蚀类型、影响腐蚀性能的自身因素及外部因素、提高镁合金自身耐蚀性能及表面改性等方面系统综述了近年来的研究进展,并对生物镁合金耐蚀性能研究的未来发展趋势进行了展望:一方面,通过低合金化、高纯化及细晶化等手段改善镁合金自身耐腐蚀性能;另一方面,从耐蚀、抗菌及载药等方面着手设计可靠涂层;此外,研究镁合金植入器械的腐蚀降解行为及机理还需综合考虑腐蚀介质流场应力等体内服役因素。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪荣香
洪立鑫
章晓波
关键词 生物材料镁合金耐腐蚀性能表面改性    
Abstract

Biomedical magnesium alloys exhibit high specific strength, low density, proper elastic modulus, biodegradability, good biocompatibility and biomechanical compatibility, thus show extensive application perspective in bone fixation and cardiovascular stent.However, fast and nonuniform corrosion of magnesium alloys may easily cause the premature loss of mechanical integrity that restricts their clinical application in load bearing. In this paper, the research progress of magnesium alloys was systematically reviewed from the aspects of corrosion modes, the intrinsic and external factors affecting corrosion resistance, improvement of intrinsic corrosion resistance and surface modification, and the future development trend of corrosion resistance of biomedical magnesium alloys was prospected. On the one hand, the corrosion resistance of magnesium alloys can be improved by means such as low alloying, high purification and fine crystallization. On the other hand, reliable coatings are designed from the aspects of corrosion resistance, antibacterial and drug loading. In addition, corrosion media, flow field, stress and other in-body service factors should be considered comprehensively to study the corrosion degradation behavior and mechanism of magnesium alloy implanted devices.

Key wordsbiomaterial    magnesium alloy    corrosion resistance    surface modification
收稿日期: 2021-04-01      出版日期: 2021-12-20
中图分类号:  TB304  
基金资助:国家自然科学基金面上项目(52071175);江苏省重点研发计划(社会发展)项目(BE2020702);江苏省高等学校自然科学研究重大项目(18KJA430008);江苏省研究生实践创新计划项目(SJCX21_0931)
通讯作者: 章晓波     E-mail: xbxbzhang2003@163.com
作者简介: 章晓波(1981-), 男, 教授, 博士, 研究方向为生物医用镁合金、高强耐热镁合金, 联系地址: 江苏省南京市江宁科学园弘景大道1号南京工程学院材料科学与工程学院(211167), E-mail: xbxbzhang2003@163.com
引用本文:   
汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
Rong-xiang WANG, Li-xin HONG, Xiao-bo ZHANG. Research progress in corrosion resistance of biomedical magnesium alloys. Journal of Materials Engineering, 2021, 49(12): 14-27.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000292      或      http://jme.biam.ac.cn/CN/Y2021/V49/I12/14
Fig.1  GZ51K在模拟体液中浸泡120 h后的腐蚀形貌[9]
(a)铸态,均匀腐蚀;(b)T6态,局部腐蚀
Fig.2  GZ31K合金中SF结构的扫描透射照片及该微区准原位腐蚀前后的元素分布图[21]
(a)腐蚀前; (b)腐蚀后; (1)STEM图; (2)O; (3)Mg; (4)Zn; (5)Gd; (6)Zr
Fig.3  GZ51K合金腐蚀过程示意图[9]
(a)~(d)铸态;(e)~(h)T6态
Fig.4  ZK60在pH值为5.2(a),7.4(b)和9.0(c)的PBS腐蚀液中浸泡6 h后的3D腐蚀形貌[30]
Fig.5  支架降解前(2D截面图)(a)和静态、动态浸泡3天后的micro-CT图像(b)[33]
Fig.6  膜破裂理论示意图[34]
(a)氧化膜形成;(b)氧化膜破裂(Cl-或拉力导致);(c) 基体溶解(加速H进入);(d) 加速基体溶解
Fig.7  铸态Mg-Zn-Mn-xCa合金去除腐蚀产物后的3D形貌[43]
(a)0Ca;(b)0.38Ca;(c)0.76Ca;(d)1.10Ca
Alloy State Process Ecorr/V Icorr/(μA·cm-2)
Mg-1Gd-2Zn-1Ca[55] F -1.70 135.1
T4 500 ℃, 7 h -1.58 59.1
T5 150 ℃, 30 h -1.62 81.0
Mg-5.8Zn-0.5Zr[56] T4 400 ℃, 24 h -1.26 175
T6 400 ℃, 24 h+200 ℃, 16 h -1.35 354
Mg-3Nd-1Li-0.2Zn[57] E -1.49 39.69
T4 535 ℃, 4h -1.54 21.76
Mg-3.08Nd-0.27Zn-0.43Zr[58] F -1.51 6.7
T4 540 ℃,10 h -1.50 5.3
T6 540 ℃,10 h + 200 ℃, 8 h -1.63 4.6
Mg-5Gd-1Zn-0.6Zr[59] E -1.37 34.5
T5 180 ℃,12 h -1.41 24.7
Mg-Al-Gd[60] F -1.43 30.7
T4 565 ℃,24 h -1.50 10.6
T6 565 ℃,24 h+300 ℃,20 h -1.59 7.2
Table 1  经过不同热处理工艺的镁合金的自腐蚀电位和自腐蚀电流密度[55-60]
RE Alloy Conversion coating Influence
Ce[71] AZ31 LDH coating Icorr dropped by 3 orders of magnitude
Y[72] AZ91D Y2O3, YO x/y, Mg3(PO4) 2, AlPO4, YPO4 Icorr dropped by 1 order of magnitude
Gd[73] AZ91 Gd2O3,MgO,Mg(OH)2,Al2O3 Icorr dropped by 2 orders of magnitude
Nd[74] AZ91D Nd2O3, MgO, Mg(OH)2, carboxylate of Nd Icorr dropped by 2 orders of magnitude
Pr[75] AZ80X Nanoporous layer of Pr2O3 Inhibited corrosion, self-healing properties
Sm[76] AZ91 Sm2O3, Sm2(C2O4)3 Icorr dropped by 2 orders of magnitude
La[77] Mg-Li Al2La0.15Mg0.85, La2Al24.4O39.6, LiLaO2 Icorr dropped by 2 orders of magnitude
Table 2  稀土转化膜对镁合金耐腐蚀性能影响[71-77]
Fig.8  Nd离子注入前(a)后(b)Mg-Gd-Zn-Zr合金的腐蚀截面图[86]
Fig.9  LAE442镁合金骨板腐蚀前以及在SBF中浸泡2周后的μCT 3D图片[87]
(a)腐蚀前;(b)未经表面处理;(c)在NaOH溶液中预制Mg(OH)2层处理; (d)MgF2涂层处理
1 SONG M S , ZENG R C , DING Y F , et al. Recent advances in biodegradation controls over Mg alloys for bone fracture management: a review[J]. Journal of Materials Science & Technology, 2019, 35 (4): 535- 544.
2 ZHAO D W , HUANG S B , LU F Q , et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head[J]. Biomaterials, 2016, 81 (1): 84- 92.
3 FU J Y , SU Y C , QIN Y X , et al. Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc[J]. Biomaterials, 2019, 230, 119641.
4 WINDHAGEN H , RADTKE K , WEIZBAUER A , et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomedical Engineering Online, 2020, 19 (1): 86- 86.
doi: 10.1186/s12938-020-00818-8
5 LEE J W , HAN H S , HAN K J , et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 716- 721.
doi: 10.1073/pnas.1518238113
6 ESMAILY M , SVENSSON J E , FAJARDO S , et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89, 92- 193.
doi: 10.1016/j.pmatsci.2017.04.011
7 刘玉项. 合金化对镁电化学腐蚀速率影响的研究进展[J]. 稀有金属材料与工程, 2021, 50 (1): 361- 372.
7 LIU Y X . Research progress in effect of alloying on electrochemical corrosion rates of Mg alloys[J]. Rare Metal Materials and Engineering, 2021, 50 (1): 361- 372.
8 万天, 宋述鹏, 王今朝, 等. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48 (1): 19- 26.
8 WAN T , SONG S P , WANG J Z , et al. Research progress in corrosion behavior of biomedical magnesium alloys[J]. Journal of Materials Engineering, 2020, 48 (1): 19- 26.
9 ZHANG X B , BA Z X , WANG Q , et al. Uniform corrosion behavior of GZ51K alloy with long period stacking ordered structure for biomedical application[J]. Corrosion Science, 2014, 88, 1- 5.
doi: 10.1016/j.corsci.2014.07.004
10 任伊宾, 黄晶晶, 杨柯, 等. 纯镁的生物腐蚀研究[J]. 金属学报, 2005, 41 (11): 1228- 1232.
doi: 10.3321/j.issn:0412-1961.2005.11.018
10 REN Y B , HUANG J J , YANG K , et al. Study of bio-corrosion of pure magnesium[J]. Acta Metallurgica Sinica, 2005, 41 (11): 1228- 1232.
doi: 10.3321/j.issn:0412-1961.2005.11.018
11 ZENG R C , SUN L , ZHENG Y F , et al. Corrosion and characterisation of dual phase Mg-Li-Ca alloy in Hank's solution: the influence of microstructural features[J]. Corrosion Science, 2014, 79, 69- 82.
doi: 10.1016/j.corsci.2013.10.028
12 CHO D H , LEE B W , PARK J Y , et al. Effect of Mn addition on corrosion properties of biodegradable Mg-4Zn-0.5Ca-xMn alloys[J]. Journal of Alloys and Compounds, 2017, 695, 1166- 1174.
doi: 10.1016/j.jallcom.2016.10.244
13 RALSTON K D , BIRBILIS N , DAVIES C H J . Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63 (12): 1201- 1204.
doi: 10.1016/j.scriptamat.2010.08.035
14 LUO Y F , DENG Y L , GUAN L Q , et al. Effect of grain size and crystal orientation on the corrosion behavior of as-extruded Mg-6Gd-2Y-0.2Zr alloy[J]. Corrosion Science, 2020, 164, 108338.
doi: 10.1016/j.corsci.2019.108338
15 LIU J H , HAN E H , SONG Y G , et al. Effect of twins on the corrosion behavior of Mg-5Y-7Gd-1Nd-0.5Zr Mg alloy[J]. Journal of Alloys and Compounds, 2018, 757, 356- 363.
doi: 10.1016/j.jallcom.2018.05.105
16 AUNG N N , ZHOU W . Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy[J]. Corrosion Science, 2010, 52 (2): 589- 594.
doi: 10.1016/j.corsci.2009.10.018
17 ZHANG J Y , JIANG B , YANG Q S , et al. Role of second phases on the corrosion resistance of Mg-Nd-Zr alloys[J]. Journal of Alloys and Compounds, 2020, 849, 156619.
doi: 10.1016/j.jallcom.2020.156619
18 GONG C W , HE X Z , YAN X . Corrosion behavior of Mg-Ca-Zn alloys with high Zn content[J]. Journal of Physics and Chemistry of Solids, 2021, 152, 109952.
doi: 10.1016/j.jpcs.2021.109952
19 JOENSSON M , THIERRY D , LEBOZEC N . The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe[J]. Corrosion Science, 2006, 48 (5): 1193- 1208.
doi: 10.1016/j.corsci.2005.05.008
20 XIE J S , ZHANG J H , YOU Z H , et al. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying[J]. Journal of Magnesium and Alloys, 2021, 9 (1): 41- 56.
doi: 10.1016/j.jma.2020.08.016
21 ZHANG X B , KAIRY S K , DAI J W , et al. A closer look at the role of nanometer scale solute-rich stacking faults in the localized corrosion of a magnesium alloy GZ31K[J]. Journal of the Electrochemical Society, 2018, 65 (7): 310- 316.
22 ZHANG X B , DAI J W , ZHANG R F , et al. Corrosion behavior of Mg-3Gd-1Zn-0.4Zr alloy with and without stacking faults[J]. Journal of Magnesium and Alloys, 2019, 7 (2): 240- 248.
doi: 10.1016/j.jma.2019.02.009
23 NIE Y J , DAI J W , LI X , et al. Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures[J]. Journal of Magnesium and Alloys, 2021, 9 (4): 1123- 1146.
doi: 10.1016/j.jma.2020.09.021
24 ZHEN Z , XI T F , ZHENG Y F . A review on in vitro corrosion performance test of biodegradable metallic materials[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (8): 2283- 2293.
doi: 10.1016/S1003-6326(13)62730-2
25 LIANG M J , WU C , MA Y , et al. Influences of aggressive ions in human plasma on the corrosion behavior of AZ80 magnesium alloy[J]. Materials Science and Engineering: C, 2021, 119, 111521.
doi: 10.1016/j.msec.2020.111521
26 HOU R Q , ZHANG F , JIANG P L , et al. Corrosion inhibition of pre-formed mussel adhesive protein (Mefp-1) film to magnesium alloy[J]. Corrosion Science, 2019, 164, 108309.
27 XIN Y , HU T , CHU P K . Influence of test solutions on in vitro studies of biomedical magnesium alloys[J]. Journal of the Electrochemical Society, 2010, 157 (7): 238- 243.
doi: 10.1149/1.3421651
28 POKHAREL D B , WU L , DONG J , et al. Effect of glycine addition on the in-vitro corrosion behavior of AZ31 magnesium alloy in Hank's solution[J]. Journal of Materials Science & Technology, 2021, 81, 97- 107.
29 LIU S , WANG B . Electrochemical corrosion behavior of a magnesium calcium alloy in simulated body fluids with different glucose concentrations[J]. Journal of Materials Research and Technology, 2020, 9 (3): 6612- 6619.
doi: 10.1016/j.jmrt.2020.04.052
30 SUN K Q , GAO H , HU J Q , et al. Effect of pH on the corrosion and crack growth behavior of the ZK60 magnesium alloy[J]. Corrosion Science, 2021, 179, 109135.
doi: 10.1016/j.corsci.2020.109135
31 韩林原, 李旋, 储成林, 等. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53 (10): 1347- 1356.
doi: 10.11900/0412.1961.2017.00248
31 HAN L Y , LI X , CHU C L , et al. Corrosion behavior of AZ31 magnesium alloy in dynamic conditions[J]. Acta Metallurgica Sinica, 2017, 53 (10): 1347- 1356.
doi: 10.11900/0412.1961.2017.00248
32 SAAD A P M , RAHIM R A A , HARUN M N , et al. The influence of flow rates on the dynamic degradation behaviour of porous magnesium under a simulated environment of human cancellous bone[J]. Materials & Design, 2017, 122, 268- 279.
33 KOO Y , TIASHA T , SHANOV V N , et al. Expandable Mg-based helical stent assessment using static, dynamic, and porcine ex vivo models[J]. Scientific Reports, 2017, 7 (1): 1173.
doi: 10.1038/s41598-017-01214-4
34 宋雨来, 付洪德, 王震, 等. 镁合金的应力腐蚀开裂: 机理、影响因素、防护技术[J]. 材料导报, 2019, 33 (5): 834- 840.
34 SONG Y L , FU H D , WANG Z , et al. Stress corrosion cracking of magnesium alloy: mechanism, influencing factors and prevention technology[J]. Materials Reports, 2019, 33 (5): 834- 840.
35 CAO F Y , SHI Z M , HOFSTETTER J , et al. Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2[J]. Corrosion Science, 2013, 75, 78- 99.
doi: 10.1016/j.corsci.2013.05.018
36 PRASAD A , UGGOWITZER P J , SHI Z , et al. Production of high purity Mg-X rare earth binary alloys using Zr[J]. Materials Science Forum, 2013, 765, 301- 305.
doi: 10.4028/www.scientific.net/MSF.765.301
37 CHEN K , DAI J W , ZHANG X B . Improvement of corrosion resistance of magnesium alloys for biomedical applications[J]. Corrosion Reviews, 2015, 33 (3/4): 101- 117.
38 SONG G L . Control of biodegradation of biocompatable magnesium alloys[J]. Corrosion Science, 2007, 49 (4): 1696- 1701.
doi: 10.1016/j.corsci.2007.01.001
39 ZHANG X B , YUAN G Y , MAO L , et al. Biocorrosion properties of as-extruded Mg-Nd-Zn-Zr alloy compared with commercial AZ31 and WE43 alloys[J]. Materials Letters, 2012, 66 (1): 209- 211.
doi: 10.1016/j.matlet.2011.08.079
40 LIU Y , CHENG W L , GU X J , et al. Tailoring the microstructural characteristic and improving the corrosion resistance of extruded dilute Mg-0.5Bi-0.5Sn alloy by microalloying with Mn[J]. Journal of Magnesium and Alloys, 2021, 9 (5): 1656- 1668.
doi: 10.1016/j.jma.2020.07.010
41 CAI S H , LEI T , LI N F , et al. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys[J]. Materials Science and Engineering: C, 2012, 32 (8): 2570- 2577.
doi: 10.1016/j.msec.2012.07.042
42 WEI L Y , LI J Y , ZHANG Y , et al. Effects of Zn content on microstructure, mechanical and degradation behaviors of Mg-xZn-0.2Ca-0.1Mn alloys[J]. Materials Chemistry and Physics, 2020, 241, 122441.
doi: 10.1016/j.matchemphys.2019.122441
43 ZHANG Y , LI J X , LI J Y . Effects of calcium addition on phase characteristics and corrosion behaviors of Mg-2Zn-0.2Mn-xCa in simulated body fluid[J]. Journal of Alloys and Compounds, 2017, 728, 37- 46.
doi: 10.1016/j.jallcom.2017.08.264
44 MOHAMED A , EL-AZIZ A M , BREITINGER H G . Study of the degradation behavior and the biocompatibility of Mg-0.8Ca alloy for orthopedic implant applications[J]. Journal of Magnesium and Alloys, 2019, 7 (2): 249- 257.
doi: 10.1016/j.jma.2019.02.007
45 BORNAPOUR M , MUJA N , SHUM-TIM D , et al. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite[J]. Acta Biomaterialia, 2013, 9 (2): 5319- 5330.
doi: 10.1016/j.actbio.2012.07.045
46 WEN Y F , LIU Q S , WANG J F , et al. Improving in vitro and in vivo corrosion resistance and biocompatibility of Mg-1Zn-1Sn alloys by microalloying with Sr[J]. Bioactive Materials, 2021, 6 (12): 4654- 4669.
doi: 10.1016/j.bioactmat.2021.04.043
47 ZHANG X B , YUAN G Y , MAO L , et al. Biocorrosion properties of as-extruded Mg-Nd-Zn-Zr alloy compared with commercial AZ31 and WE43 alloys[J]. Materials Letters, 2012, 66 (1): 209- 211.
doi: 10.1016/j.matlet.2011.08.079
48 XIE K , WANG L , GUO Y , et al. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures[J]. Journal of Orthopaedic Translation, 2021, 27, 96- 100.
doi: 10.1016/j.jot.2020.11.007
49 REN X D , LI X S , YANG Y , et al. Corrosion behavior and electrochemical properties of as-cast Mg-2Zn-0.5Ca-Y series magnesium alloys in Hank's solution and NaCl solution[J]. Rare Metal Materials and Engineering, 2017, 46 (1): 45- 50.
doi: 10.1016/S1875-5372(17)30075-9
50 CHEN J , TAN L , YU X , et al. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys[J]. Journal of Materials Science & Technology, 2018, 35 (4): 503- 511.
51 SHUAI C J , YANG Y W , WU P , et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy[J]. Journal of Alloys and Compounds, 2017, 691, 961- 969.
doi: 10.1016/j.jallcom.2016.09.019
52 LIAO J S , HOTTA M , MORI Y . Improved corrosion resistance of a high-strength Mg-Al-Mn-Ca magnesium alloy made by rapid solidification powder metallurgy[J]. Materials Science and Engineering: A, 2012, 544, 10- 20.
doi: 10.1016/j.msea.2012.02.046
53 ABOUDZADEH N , DEHGHANIAN C , SHOKRGOZAR M A . In vitro degradation and cytotoxicity of Mg-5Zn-0.3Ca/nHA biocomposites prepared by powder metallurgy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28 (9): 1745- 1754.
doi: 10.1016/S1003-6326(18)64818-6
54 YAN Y , CHU X , LUO X E , et al. A homogenous microstructural Mg-based matrix model for orthopedic application with generating uniform and smooth corrosion product layer in Ringer's solution: study on biodegradable behavior of Mg-Zn alloys prepared by powder metallurgy as a case[J]. Journal of Magnesium and Alloys, 2021, 9 (1): 225- 240.
doi: 10.1016/j.jma.2020.03.010
55 JANBOZORGI M , TAHERI K K , TAHERI A K . Microstructural evolution, mechanical properties, and corrosion resistance of a heat-treated Mg alloy for the bio-medical application[J]. Journal of Magnesium and Alloys, 2019, 7 (1): 80- 89.
doi: 10.1016/j.jma.2018.11.002
56 LI L , WANG T , WANG Y , et al. Effects of ytterbium addition and heat treatment on the mechanical properties and biocorrosion behaviors of Mg-Zn-Zr alloy[J]. Journal of Magnesium and Alloys, 2020, 8 (2): 499- 509.
doi: 10.1016/j.jma.2019.11.013
57 GAO G J , ZENG M Q , ZHANG E L , et al. Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg-3 Nd-1Li-0.2Zn alloy[J]. Journal of Materials Science & Technology, 2021, 83, 161- 178.
58 章晓波, 袁广银, 王章忠. 铸造镁合金Mg-Nd-Zn-Zr的生物腐蚀性能[J]. 中国有色金属学报, 2013, 23 (4): 905- 911.
58 ZHANG X B , YUAN G Y , WANG Z Z . Biocorrosion properties of as-cast Mg-Nd-Zn-Zr magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23 (4): 905- 911.
59 ZHANG X B , WANG Q , BA Z X , et al. Improved corrosion resistance of as-extruded GZ51K biomagnesium alloy with high mechanical properties by aging treatment[J]. Journal of Materials Engineering and Performance, 2016, 25 (3): 719- 725.
doi: 10.1007/s11665-016-1941-7
60 LU F , MA A , JIANG J H , et al. Significantly improved corrosion resistance of heat-treated Mg-Al-Gd alloy containing profuse needle-like precipitates within grains[J]. Corrosion Science, 2015, 94, 171- 178.
doi: 10.1016/j.corsci.2015.01.052
61 ZHANG X B , WANG Z Z , YUAN G Y , et al. Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion[J]. Materials Science and Engineering: B, 2012, 177 (13): 1113- 1119.
doi: 10.1016/j.mseb.2012.05.020
62 CHEN J X , ZHU X Y , TAN L L , et al. Effects of ECAP extrusion on the microstructure, mechanical properties and biodegradability of Mg-2Zn-xGd-0.5Zr alloys[J]. Acta Metallurgica Sinica, 2021, 34 (2): 205- 216.
doi: 10.1007/s40195-020-01136-7?utm_source=TrendMD
63 MARTYNENKO N , LUKYANOVA E , ANISMOVA N , et al. Improving the property profile of a bioresorbable Mg-Y-Nd-Zr alloy by deformation treatments[J]. Materialia, 2020, 13, 100841.
doi: 10.1016/j.mtla.2020.100841
64 GAO J H , GUAN S K , REN Z W , et al. Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid[J]. Materials Letters, 2011, 65, 691- 693.
doi: 10.1016/j.matlet.2010.11.015
65 YIN Z Z , QI W C , ZENG R C , et al. Advances in coatings on biodegradable magnesium alloys[J]. Journal of Magnesium and Alloys, 2020, 8 (1): 42- 65.
doi: 10.1016/j.jma.2019.09.008
66 YU X M , LBRAHIM M , LIU Z Y , et al. Biofunctional Mg coating on PEEK for improving bioactivity[J]. Bioactive Materials, 2018, 3 (2): 139- 143.
doi: 10.1016/j.bioactmat.2018.01.007
67 WU S X , WANG S R , WANG G Q , et al. Microstructure, mechanical and corrosion properties of magnesium alloy bone plate treated by high-energy shot peening[J]. Transactions of Nonferrous Metals Society of China, 2019, 29 (8): 1641- 1652.
doi: 10.1016/S1003-6326(19)65071-5
68 PERAL L B , ZAFRA A , BAGHERIFARD S , et al. Effect of warm shot peening treatments on surface properties and corrosion behavior of AZ31 magnesium alloy[J]. Surface & Coatings Technology, 2020, 401, 126285.
69 MHAEDE M , PASTOREK F , HADZIMA B . Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate di-hydrate (DCPD)[J]. Materials Science and Engineering: C, 2014, 39, 330- 335.
doi: 10.1016/j.msec.2014.03.023
70 LALEH M , KARGAR F . Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy[J]. Journal of Alloys and Compounds, 2011, 509 (37): 9150- 9156.
doi: 10.1016/j.jallcom.2011.06.094
71 ASL V Z , ZHAO J M , ANJUM M J , et al. The effect of cerium cation on the microstructure and anti-corrosion performance of LDH conversion coatings on AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2020, 821, 153248.
doi: 10.1016/j.jallcom.2019.153248
72 HAN B . Preparation and phosphating of yttrium-based chemical conversion coatings on AZ91D magnesium alloy for corrosion protection[J]. International Journal of Electrochemical Science, 2016, 11 (12): 10779- 10794.
73 CUI X F , JIN G , YANG Y Y , et al. Study of gadolinium based protective coating for magnesium alloys[J]. Surface Engineering, 2012, 28 (10): 719- 724.
doi: 10.1179/1743294412Y.0000000039
74 CUI X F , LIU Z , LIN L L , et al. Investigation of carboxylic acid-neodymium conversion films on magnesium alloy[J]. Journal of Materials Engineering and Performance, 2015, 24 (1): 461- 467.
doi: 10.1007/s11665-014-1263-6
75 JAMALI S S , MOULTON S E , TALLMAN D E , et al. Self-healing characteristic of praseodymium conversion coating on AZ-Nd Mg alloy studied by scanning electrochemical microscopy[J]. Electrochemistry Communications, 2017, 76, 6- 9.
doi: 10.1016/j.elecom.2017.01.004
76 HOU L G , CUI X F , YANG Y Y , et al. Chrome-free samarium-based protective coatings for magnesium alloys[J]. Physics Procedia, 2013, 65, 261- 266.
77 SONG D L , JING X Y , WANG J , et al. Microwave-assisted synthesis of lanthanum conversion coating on Mg-Li alloy and its corrosion resistance[J]. Corrosion Science, 2011, 53 (11): 3651- 3656.
doi: 10.1016/j.corsci.2011.07.006
78 BARAJAS J D , JOYA J C , DURAN K S , et al. Relationship between microstructure and formation-biodegradation mechanism of fluoride conversion coatings synthesised on the AZ31 magnesium alloy[J]. Surface & Coatings Technology, 2019, 374, 424- 436.
79 ZENG R C , LAN Z D , KONG L H , et al. Characterization of calcium-modified zinc phosphate conversion coatings and their influences on corrosion resistance of AZ31 alloy[J]. Surface & Coatings Technology, 2011, 205 (11): 3347- 3355.
80 CHEN Y N , WU L , YAO W H , et al. One-step in situ synthesis of graphene oxide/MgAl-layered double hydroxide coating on a micro-arc oxidation coating for enhanced corrosion protection of magnesium alloys[J]. Surface & Coatings Technology, 2021, 413, 127083.
81 LIN J Z , CHEN W D , TANG Q Q , et al. Lithium-modified MAO coating enhances corrosion resistance and osteogenic differentiation for pure magnesium[J]. Surfaces & Interfaces, 2021, 22, 100805.
82 WU G S , ZENG X Q , YUAN G Y . Growth and corrosion of aluminum PVD-coating on AZ31 magnesium alloy[J]. Materials Letters, 2008, 62 (28): 4325- 4327.
doi: 10.1016/j.matlet.2008.07.014
83 ZHENG T X , HU Y B , PAN F S , et al. Fabrication of corrosion-resistant superhydrophobic coating on magnesium alloy by one-step electrodeposition method[J]. Journal of Magnesium and Alloys, 2019, 7 (2): 193- 202.
doi: 10.1016/j.jma.2019.05.006
84 ALAEI M , ATAPOUR M , LABBAF S . Electrophoretic deposition of chitosan-bioactive glass nanocomposite coatings on AZ91 Mg alloy for biomedical applications[J]. Progress in Organic Coatings, 2020, 147, 105803.
doi: 10.1016/j.porgcoat.2020.105803
85 TAYYABA Q , SHAHZAD M , BUTT A Q , et al. The influence of electrophoretic deposition of HA on Mg-Zn-Zr alloy on its in-vitro degradation behaviour in the Ringer's solution[J]. Surface & Coatings Technology, 2019, 375, 197- 204.
86 WANG Z Z , TAO X W , ZHANG X B , et al. Corrosion behaviour of Nd ion implanted Mg-Gd-Zn-Zr alloy in simulated body fluid[J]. Materials Technology, 2015, 30 (6): 321- 326.
doi: 10.1179/1753555715Y.0000000004
87 WOLTERS L , SILKE B , ANGRISANI N , et al. Degradation behaviour of LAE442-based plate-screw-systems in an in vitro bone model[J]. Materials Science and Engineering: C, 2015, 49, 305- 315.
doi: 10.1016/j.msec.2015.01.019
[1] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[2] 夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
[3] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[4] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[5] 张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
[6] 万李, 王海蟒, 蔡谞, 胡刻铭, 岳文, 张洪玉. 骨软骨组织工程仿生梯度支架研究进展[J]. 材料工程, 2022, 50(2): 38-49.
[7] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[8] 李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
[9] 王大伟, 李晔, 巨乐章, 朱安安. 氧气等离子体处理对CFRP表面特性及胶接界面力学性能的影响[J]. 材料工程, 2022, 50(10): 118-127.
[10] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[11] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[12] 田亚强, 赵冠璋, 刘芸, 张源, 郑小平, 陈连生. 生物可降解医用镁合金体内外降解行为研究进展[J]. 材料工程, 2021, 49(5): 24-37.
[13] 冯靖凯, 张丁非, 陈霞, 赵阳, 蒋斌, 潘复生. 一种细化AZ31镁合金的固液两相区复合挤压工艺[J]. 材料工程, 2021, 49(4): 78-88.
[14] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[15] 毛龙, 刘小超, 谢斌, 吴慧青, 刘跃军. 植酸-金属离子螯合物改性层状黏土及其在聚己内酯中的增强与抗菌效应研究[J]. 材料工程, 2021, 49(2): 127-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn