1 School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China 2 Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167, China
Biomedical magnesium alloys exhibit high specific strength, low density, proper elastic modulus, biodegradability, good biocompatibility and biomechanical compatibility, thus show extensive application perspective in bone fixation and cardiovascular stent.However, fast and nonuniform corrosion of magnesium alloys may easily cause the premature loss of mechanical integrity that restricts their clinical application in load bearing. In this paper, the research progress of magnesium alloys was systematically reviewed from the aspects of corrosion modes, the intrinsic and external factors affecting corrosion resistance, improvement of intrinsic corrosion resistance and surface modification, and the future development trend of corrosion resistance of biomedical magnesium alloys was prospected. On the one hand, the corrosion resistance of magnesium alloys can be improved by means such as low alloying, high purification and fine crystallization. On the other hand, reliable coatings are designed from the aspects of corrosion resistance, antibacterial and drug loading. In addition, corrosion media, flow field, stress and other in-body service factors should be considered comprehensively to study the corrosion degradation behavior and mechanism of magnesium alloy implanted devices.
SONG M S , ZENG R C , DING Y F , et al. Recent advances in biodegradation controls over Mg alloys for bone fracture management: a review[J]. Journal of Materials Science & Technology, 2019, 35 (4): 535- 544.
2
ZHAO D W , HUANG S B , LU F Q , et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head[J]. Biomaterials, 2016, 81 (1): 84- 92.
3
FU J Y , SU Y C , QIN Y X , et al. Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc[J]. Biomaterials, 2019, 230, 119641.
4
WINDHAGEN H , RADTKE K , WEIZBAUER A , et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomedical Engineering Online, 2020, 19 (1): 86- 86.
doi: 10.1186/s12938-020-00818-8
5
LEE J W , HAN H S , HAN K J , et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 716- 721.
doi: 10.1073/pnas.1518238113
6
ESMAILY M , SVENSSON J E , FAJARDO S , et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89, 92- 193.
doi: 10.1016/j.pmatsci.2017.04.011
LIU Y X . Research progress in effect of alloying on electrochemical corrosion rates of Mg alloys[J]. Rare Metal Materials and Engineering, 2021, 50 (1): 361- 372.
WAN T , SONG S P , WANG J Z , et al. Research progress in corrosion behavior of biomedical magnesium alloys[J]. Journal of Materials Engineering, 2020, 48 (1): 19- 26.
9
ZHANG X B , BA Z X , WANG Q , et al. Uniform corrosion behavior of GZ51K alloy with long period stacking ordered structure for biomedical application[J]. Corrosion Science, 2014, 88, 1- 5.
doi: 10.1016/j.corsci.2014.07.004
REN Y B , HUANG J J , YANG K , et al. Study of bio-corrosion of pure magnesium[J]. Acta Metallurgica Sinica, 2005, 41 (11): 1228- 1232.
doi: 10.3321/j.issn:0412-1961.2005.11.018
11
ZENG R C , SUN L , ZHENG Y F , et al. Corrosion and characterisation of dual phase Mg-Li-Ca alloy in Hank's solution: the influence of microstructural features[J]. Corrosion Science, 2014, 79, 69- 82.
doi: 10.1016/j.corsci.2013.10.028
12
CHO D H , LEE B W , PARK J Y , et al. Effect of Mn addition on corrosion properties of biodegradable Mg-4Zn-0.5Ca-xMn alloys[J]. Journal of Alloys and Compounds, 2017, 695, 1166- 1174.
doi: 10.1016/j.jallcom.2016.10.244
13
RALSTON K D , BIRBILIS N , DAVIES C H J . Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63 (12): 1201- 1204.
doi: 10.1016/j.scriptamat.2010.08.035
14
LUO Y F , DENG Y L , GUAN L Q , et al. Effect of grain size and crystal orientation on the corrosion behavior of as-extruded Mg-6Gd-2Y-0.2Zr alloy[J]. Corrosion Science, 2020, 164, 108338.
doi: 10.1016/j.corsci.2019.108338
15
LIU J H , HAN E H , SONG Y G , et al. Effect of twins on the corrosion behavior of Mg-5Y-7Gd-1Nd-0.5Zr Mg alloy[J]. Journal of Alloys and Compounds, 2018, 757, 356- 363.
doi: 10.1016/j.jallcom.2018.05.105
16
AUNG N N , ZHOU W . Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy[J]. Corrosion Science, 2010, 52 (2): 589- 594.
doi: 10.1016/j.corsci.2009.10.018
17
ZHANG J Y , JIANG B , YANG Q S , et al. Role of second phases on the corrosion resistance of Mg-Nd-Zr alloys[J]. Journal of Alloys and Compounds, 2020, 849, 156619.
doi: 10.1016/j.jallcom.2020.156619
18
GONG C W , HE X Z , YAN X . Corrosion behavior of Mg-Ca-Zn alloys with high Zn content[J]. Journal of Physics and Chemistry of Solids, 2021, 152, 109952.
doi: 10.1016/j.jpcs.2021.109952
19
JOENSSON M , THIERRY D , LEBOZEC N . The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe[J]. Corrosion Science, 2006, 48 (5): 1193- 1208.
doi: 10.1016/j.corsci.2005.05.008
20
XIE J S , ZHANG J H , YOU Z H , et al. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying[J]. Journal of Magnesium and Alloys, 2021, 9 (1): 41- 56.
doi: 10.1016/j.jma.2020.08.016
21
ZHANG X B , KAIRY S K , DAI J W , et al. A closer look at the role of nanometer scale solute-rich stacking faults in the localized corrosion of a magnesium alloy GZ31K[J]. Journal of the Electrochemical Society, 2018, 65 (7): 310- 316.
22
ZHANG X B , DAI J W , ZHANG R F , et al. Corrosion behavior of Mg-3Gd-1Zn-0.4Zr alloy with and without stacking faults[J]. Journal of Magnesium and Alloys, 2019, 7 (2): 240- 248.
doi: 10.1016/j.jma.2019.02.009
23
NIE Y J , DAI J W , LI X , et al. Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures[J]. Journal of Magnesium and Alloys, 2021, 9 (4): 1123- 1146.
doi: 10.1016/j.jma.2020.09.021
24
ZHEN Z , XI T F , ZHENG Y F . A review on in vitro corrosion performance test of biodegradable metallic materials[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (8): 2283- 2293.
doi: 10.1016/S1003-6326(13)62730-2
25
LIANG M J , WU C , MA Y , et al. Influences of aggressive ions in human plasma on the corrosion behavior of AZ80 magnesium alloy[J]. Materials Science and Engineering: C, 2021, 119, 111521.
doi: 10.1016/j.msec.2020.111521
26
HOU R Q , ZHANG F , JIANG P L , et al. Corrosion inhibition of pre-formed mussel adhesive protein (Mefp-1) film to magnesium alloy[J]. Corrosion Science, 2019, 164, 108309.
27
XIN Y , HU T , CHU P K . Influence of test solutions on in vitro studies of biomedical magnesium alloys[J]. Journal of the Electrochemical Society, 2010, 157 (7): 238- 243.
doi: 10.1149/1.3421651
28
POKHAREL D B , WU L , DONG J , et al. Effect of glycine addition on the in-vitro corrosion behavior of AZ31 magnesium alloy in Hank's solution[J]. Journal of Materials Science & Technology, 2021, 81, 97- 107.
29
LIU S , WANG B . Electrochemical corrosion behavior of a magnesium calcium alloy in simulated body fluids with different glucose concentrations[J]. Journal of Materials Research and Technology, 2020, 9 (3): 6612- 6619.
doi: 10.1016/j.jmrt.2020.04.052
30
SUN K Q , GAO H , HU J Q , et al. Effect of pH on the corrosion and crack growth behavior of the ZK60 magnesium alloy[J]. Corrosion Science, 2021, 179, 109135.
doi: 10.1016/j.corsci.2020.109135
HAN L Y , LI X , CHU C L , et al. Corrosion behavior of AZ31 magnesium alloy in dynamic conditions[J]. Acta Metallurgica Sinica, 2017, 53 (10): 1347- 1356.
doi: 10.11900/0412.1961.2017.00248
32
SAAD A P M , RAHIM R A A , HARUN M N , et al. The influence of flow rates on the dynamic degradation behaviour of porous magnesium under a simulated environment of human cancellous bone[J]. Materials & Design, 2017, 122, 268- 279.
33
KOO Y , TIASHA T , SHANOV V N , et al. Expandable Mg-based helical stent assessment using static, dynamic, and porcine ex vivo models[J]. Scientific Reports, 2017, 7 (1): 1173.
doi: 10.1038/s41598-017-01214-4
SONG Y L , FU H D , WANG Z , et al. Stress corrosion cracking of magnesium alloy: mechanism, influencing factors and prevention technology[J]. Materials Reports, 2019, 33 (5): 834- 840.
35
CAO F Y , SHI Z M , HOFSTETTER J , et al. Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2[J]. Corrosion Science, 2013, 75, 78- 99.
doi: 10.1016/j.corsci.2013.05.018
36
PRASAD A , UGGOWITZER P J , SHI Z , et al. Production of high purity Mg-X rare earth binary alloys using Zr[J]. Materials Science Forum, 2013, 765, 301- 305.
doi: 10.4028/www.scientific.net/MSF.765.301
37
CHEN K , DAI J W , ZHANG X B . Improvement of corrosion resistance of magnesium alloys for biomedical applications[J]. Corrosion Reviews, 2015, 33 (3/4): 101- 117.
38
SONG G L . Control of biodegradation of biocompatable magnesium alloys[J]. Corrosion Science, 2007, 49 (4): 1696- 1701.
doi: 10.1016/j.corsci.2007.01.001
39
ZHANG X B , YUAN G Y , MAO L , et al. Biocorrosion properties of as-extruded Mg-Nd-Zn-Zr alloy compared with commercial AZ31 and WE43 alloys[J]. Materials Letters, 2012, 66 (1): 209- 211.
doi: 10.1016/j.matlet.2011.08.079
40
LIU Y , CHENG W L , GU X J , et al. Tailoring the microstructural characteristic and improving the corrosion resistance of extruded dilute Mg-0.5Bi-0.5Sn alloy by microalloying with Mn[J]. Journal of Magnesium and Alloys, 2021, 9 (5): 1656- 1668.
doi: 10.1016/j.jma.2020.07.010
41
CAI S H , LEI T , LI N F , et al. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys[J]. Materials Science and Engineering: C, 2012, 32 (8): 2570- 2577.
doi: 10.1016/j.msec.2012.07.042
42
WEI L Y , LI J Y , ZHANG Y , et al. Effects of Zn content on microstructure, mechanical and degradation behaviors of Mg-xZn-0.2Ca-0.1Mn alloys[J]. Materials Chemistry and Physics, 2020, 241, 122441.
doi: 10.1016/j.matchemphys.2019.122441
43
ZHANG Y , LI J X , LI J Y . Effects of calcium addition on phase characteristics and corrosion behaviors of Mg-2Zn-0.2Mn-xCa in simulated body fluid[J]. Journal of Alloys and Compounds, 2017, 728, 37- 46.
doi: 10.1016/j.jallcom.2017.08.264
44
MOHAMED A , EL-AZIZ A M , BREITINGER H G . Study of the degradation behavior and the biocompatibility of Mg-0.8Ca alloy for orthopedic implant applications[J]. Journal of Magnesium and Alloys, 2019, 7 (2): 249- 257.
doi: 10.1016/j.jma.2019.02.007
45
BORNAPOUR M , MUJA N , SHUM-TIM D , et al. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite[J]. Acta Biomaterialia, 2013, 9 (2): 5319- 5330.
doi: 10.1016/j.actbio.2012.07.045
46
WEN Y F , LIU Q S , WANG J F , et al. Improving in vitro and in vivo corrosion resistance and biocompatibility of Mg-1Zn-1Sn alloys by microalloying with Sr[J]. Bioactive Materials, 2021, 6 (12): 4654- 4669.
doi: 10.1016/j.bioactmat.2021.04.043
47
ZHANG X B , YUAN G Y , MAO L , et al. Biocorrosion properties of as-extruded Mg-Nd-Zn-Zr alloy compared with commercial AZ31 and WE43 alloys[J]. Materials Letters, 2012, 66 (1): 209- 211.
doi: 10.1016/j.matlet.2011.08.079
48
XIE K , WANG L , GUO Y , et al. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures[J]. Journal of Orthopaedic Translation, 2021, 27, 96- 100.
doi: 10.1016/j.jot.2020.11.007
49
REN X D , LI X S , YANG Y , et al. Corrosion behavior and electrochemical properties of as-cast Mg-2Zn-0.5Ca-Y series magnesium alloys in Hank's solution and NaCl solution[J]. Rare Metal Materials and Engineering, 2017, 46 (1): 45- 50.
doi: 10.1016/S1875-5372(17)30075-9
50
CHEN J , TAN L , YU X , et al. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys[J]. Journal of Materials Science & Technology, 2018, 35 (4): 503- 511.
51
SHUAI C J , YANG Y W , WU P , et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy[J]. Journal of Alloys and Compounds, 2017, 691, 961- 969.
doi: 10.1016/j.jallcom.2016.09.019
52
LIAO J S , HOTTA M , MORI Y . Improved corrosion resistance of a high-strength Mg-Al-Mn-Ca magnesium alloy made by rapid solidification powder metallurgy[J]. Materials Science and Engineering: A, 2012, 544, 10- 20.
doi: 10.1016/j.msea.2012.02.046
53
ABOUDZADEH N , DEHGHANIAN C , SHOKRGOZAR M A . In vitro degradation and cytotoxicity of Mg-5Zn-0.3Ca/nHA biocomposites prepared by powder metallurgy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28 (9): 1745- 1754.
doi: 10.1016/S1003-6326(18)64818-6
54
YAN Y , CHU X , LUO X E , et al. A homogenous microstructural Mg-based matrix model for orthopedic application with generating uniform and smooth corrosion product layer in Ringer's solution: study on biodegradable behavior of Mg-Zn alloys prepared by powder metallurgy as a case[J]. Journal of Magnesium and Alloys, 2021, 9 (1): 225- 240.
doi: 10.1016/j.jma.2020.03.010
55
JANBOZORGI M , TAHERI K K , TAHERI A K . Microstructural evolution, mechanical properties, and corrosion resistance of a heat-treated Mg alloy for the bio-medical application[J]. Journal of Magnesium and Alloys, 2019, 7 (1): 80- 89.
doi: 10.1016/j.jma.2018.11.002
56
LI L , WANG T , WANG Y , et al. Effects of ytterbium addition and heat treatment on the mechanical properties and biocorrosion behaviors of Mg-Zn-Zr alloy[J]. Journal of Magnesium and Alloys, 2020, 8 (2): 499- 509.
doi: 10.1016/j.jma.2019.11.013
57
GAO G J , ZENG M Q , ZHANG E L , et al. Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg-3 Nd-1Li-0.2Zn alloy[J]. Journal of Materials Science & Technology, 2021, 83, 161- 178.
ZHANG X B , YUAN G Y , WANG Z Z . Biocorrosion properties of as-cast Mg-Nd-Zn-Zr magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23 (4): 905- 911.
59
ZHANG X B , WANG Q , BA Z X , et al. Improved corrosion resistance of as-extruded GZ51K biomagnesium alloy with high mechanical properties by aging treatment[J]. Journal of Materials Engineering and Performance, 2016, 25 (3): 719- 725.
doi: 10.1007/s11665-016-1941-7
60
LU F , MA A , JIANG J H , et al. Significantly improved corrosion resistance of heat-treated Mg-Al-Gd alloy containing profuse needle-like precipitates within grains[J]. Corrosion Science, 2015, 94, 171- 178.
doi: 10.1016/j.corsci.2015.01.052
61
ZHANG X B , WANG Z Z , YUAN G Y , et al. Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion[J]. Materials Science and Engineering: B, 2012, 177 (13): 1113- 1119.
doi: 10.1016/j.mseb.2012.05.020
62
CHEN J X , ZHU X Y , TAN L L , et al. Effects of ECAP extrusion on the microstructure, mechanical properties and biodegradability of Mg-2Zn-xGd-0.5Zr alloys[J]. Acta Metallurgica Sinica, 2021, 34 (2): 205- 216.
doi: 10.1007/s40195-020-01136-7?utm_source=TrendMD
63
MARTYNENKO N , LUKYANOVA E , ANISMOVA N , et al. Improving the property profile of a bioresorbable Mg-Y-Nd-Zr alloy by deformation treatments[J]. Materialia, 2020, 13, 100841.
doi: 10.1016/j.mtla.2020.100841
64
GAO J H , GUAN S K , REN Z W , et al. Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid[J]. Materials Letters, 2011, 65, 691- 693.
doi: 10.1016/j.matlet.2010.11.015
65
YIN Z Z , QI W C , ZENG R C , et al. Advances in coatings on biodegradable magnesium alloys[J]. Journal of Magnesium and Alloys, 2020, 8 (1): 42- 65.
doi: 10.1016/j.jma.2019.09.008
66
YU X M , LBRAHIM M , LIU Z Y , et al. Biofunctional Mg coating on PEEK for improving bioactivity[J]. Bioactive Materials, 2018, 3 (2): 139- 143.
doi: 10.1016/j.bioactmat.2018.01.007
67
WU S X , WANG S R , WANG G Q , et al. Microstructure, mechanical and corrosion properties of magnesium alloy bone plate treated by high-energy shot peening[J]. Transactions of Nonferrous Metals Society of China, 2019, 29 (8): 1641- 1652.
doi: 10.1016/S1003-6326(19)65071-5
68
PERAL L B , ZAFRA A , BAGHERIFARD S , et al. Effect of warm shot peening treatments on surface properties and corrosion behavior of AZ31 magnesium alloy[J]. Surface & Coatings Technology, 2020, 401, 126285.
69
MHAEDE M , PASTOREK F , HADZIMA B . Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate di-hydrate (DCPD)[J]. Materials Science and Engineering: C, 2014, 39, 330- 335.
doi: 10.1016/j.msec.2014.03.023
70
LALEH M , KARGAR F . Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy[J]. Journal of Alloys and Compounds, 2011, 509 (37): 9150- 9156.
doi: 10.1016/j.jallcom.2011.06.094
71
ASL V Z , ZHAO J M , ANJUM M J , et al. The effect of cerium cation on the microstructure and anti-corrosion performance of LDH conversion coatings on AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2020, 821, 153248.
doi: 10.1016/j.jallcom.2019.153248
72
HAN B . Preparation and phosphating of yttrium-based chemical conversion coatings on AZ91D magnesium alloy for corrosion protection[J]. International Journal of Electrochemical Science, 2016, 11 (12): 10779- 10794.
73
CUI X F , JIN G , YANG Y Y , et al. Study of gadolinium based protective coating for magnesium alloys[J]. Surface Engineering, 2012, 28 (10): 719- 724.
doi: 10.1179/1743294412Y.0000000039
74
CUI X F , LIU Z , LIN L L , et al. Investigation of carboxylic acid-neodymium conversion films on magnesium alloy[J]. Journal of Materials Engineering and Performance, 2015, 24 (1): 461- 467.
doi: 10.1007/s11665-014-1263-6
75
JAMALI S S , MOULTON S E , TALLMAN D E , et al. Self-healing characteristic of praseodymium conversion coating on AZ-Nd Mg alloy studied by scanning electrochemical microscopy[J]. Electrochemistry Communications, 2017, 76, 6- 9.
doi: 10.1016/j.elecom.2017.01.004
76
HOU L G , CUI X F , YANG Y Y , et al. Chrome-free samarium-based protective coatings for magnesium alloys[J]. Physics Procedia, 2013, 65, 261- 266.
77
SONG D L , JING X Y , WANG J , et al. Microwave-assisted synthesis of lanthanum conversion coating on Mg-Li alloy and its corrosion resistance[J]. Corrosion Science, 2011, 53 (11): 3651- 3656.
doi: 10.1016/j.corsci.2011.07.006
78
BARAJAS J D , JOYA J C , DURAN K S , et al. Relationship between microstructure and formation-biodegradation mechanism of fluoride conversion coatings synthesised on the AZ31 magnesium alloy[J]. Surface & Coatings Technology, 2019, 374, 424- 436.
79
ZENG R C , LAN Z D , KONG L H , et al. Characterization of calcium-modified zinc phosphate conversion coatings and their influences on corrosion resistance of AZ31 alloy[J]. Surface & Coatings Technology, 2011, 205 (11): 3347- 3355.
80
CHEN Y N , WU L , YAO W H , et al. One-step in situ synthesis of graphene oxide/MgAl-layered double hydroxide coating on a micro-arc oxidation coating for enhanced corrosion protection of magnesium alloys[J]. Surface & Coatings Technology, 2021, 413, 127083.
81
LIN J Z , CHEN W D , TANG Q Q , et al. Lithium-modified MAO coating enhances corrosion resistance and osteogenic differentiation for pure magnesium[J]. Surfaces & Interfaces, 2021, 22, 100805.
82
WU G S , ZENG X Q , YUAN G Y . Growth and corrosion of aluminum PVD-coating on AZ31 magnesium alloy[J]. Materials Letters, 2008, 62 (28): 4325- 4327.
doi: 10.1016/j.matlet.2008.07.014
83
ZHENG T X , HU Y B , PAN F S , et al. Fabrication of corrosion-resistant superhydrophobic coating on magnesium alloy by one-step electrodeposition method[J]. Journal of Magnesium and Alloys, 2019, 7 (2): 193- 202.
doi: 10.1016/j.jma.2019.05.006
84
ALAEI M , ATAPOUR M , LABBAF S . Electrophoretic deposition of chitosan-bioactive glass nanocomposite coatings on AZ91 Mg alloy for biomedical applications[J]. Progress in Organic Coatings, 2020, 147, 105803.
doi: 10.1016/j.porgcoat.2020.105803
85
TAYYABA Q , SHAHZAD M , BUTT A Q , et al. The influence of electrophoretic deposition of HA on Mg-Zn-Zr alloy on its in-vitro degradation behaviour in the Ringer's solution[J]. Surface & Coatings Technology, 2019, 375, 197- 204.
86
WANG Z Z , TAO X W , ZHANG X B , et al. Corrosion behaviour of Nd ion implanted Mg-Gd-Zn-Zr alloy in simulated body fluid[J]. Materials Technology, 2015, 30 (6): 321- 326.
doi: 10.1179/1753555715Y.0000000004
87
WOLTERS L , SILKE B , ANGRISANI N , et al. Degradation behaviour of LAE442-based plate-screw-systems in an in vitro bone model[J]. Materials Science and Engineering: C, 2015, 49, 305- 315.
doi: 10.1016/j.msec.2015.01.019