1 College of Chemical and Biological Engineering, Shandong University of Scicnce and Technology, Qingdao 266590, Shandong, China 2 Department of Polymer and Materials Chemistry, School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China 3 Light Alloy Corrosion Laboratory, School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
With the progress of global population aging and the incidence rate of bone and joint diseases, the demand for bone repair medical metal materials is increasing.Bio-metallic materials include non-degradable (i.e. titanium) and degradable metals (i.e. magnesium and iron). However, metals are insufficient in corrosion resistance and osseointegration, so their surface modification needs to be optimized. It is noted that strontium (Sr) has the effect of promoting osteogenesis and inhibiting osteoclasts, and thus the use of Sr as a modified component is of great significance for improving the activity of bone cells on biomedical metal surfaces. In this paper, the corrosion resistance and biocompatibility of strontium doped coatings on titanium, magnesium and iron in recent years were summarized and compared.This article focuses on the research on improving the osseointegration performance of composite coatings prepared by combining strontium and carriers with good degradability and biocompatibility(such as hydroxyapatite, brushite, etc.) on the surface of titanium alloy, magnesium alloy and iron alloy. Finally, it is believed that the application of strontium-containing coatings on the surface of metal materials has a wide range of prospects, and it was proposed that the combination of strontium and zinc make the metal materials have antibacterial properties while promoting bone repair.It was expected to provide reference for promising clinical applications of strontium-doped coating.
ZHOU S J , JIANG W X , YOU J . Repair materials for bone defects: present status, needs and future developments[J]. Chinese Journal of Tissue Engineering Research, 2018, 22 (14): 2251- 2258.
doi: 10.3969/j.issn.2095-4344.0754
TIAN J R , LI H , ZOU Y H , et al. Corrosion resistance of heparin/montmorillonite coating on biomedical magnesium alloy[J]. Surface Technology, 2021, 50 (2): 66- 73.
LI F , YIN Z Z , ZHANG F , et al. Research advances of layered double hydroxides coatings on biomedical metals[J]. Surface Technology, 2021, 50 (2): 1- 12.
ZHANG J , YOU Q , ZOU G , et al. Application and progress of strontium in bone tissue engineering[J]. Chinese Journal of Tissue Engineering Research, 2019, 23 (18): 2936- 2940.
doi: 10.3969/j.issn.2095-4344.1712
TIAN B , WANG J M , LIU Y Y , et al. Effect of strontium ranelate on osseointegration of osteoporotic rats[J]. Chinese Journal of Clinical Medicine, 2020, 27 (3): 433- 437.
6
BORGES S G , MACHADO B , APARECIDA S , et al. Effects of strontium ranelate treatment on osteoblasts cultivated onto scaffolds of trabeculae bovine bone[J]. Journal of Bone & Mineral Metabolism, 2018, 36 (1): 73- 86.
7
GE C , CHEN F , MAO L , et al. Strontium ranelate-loaded POFC/β-TCP porous scaffolds for osteoporotic bone repair[J]. RSC Advances, 2020, 10 (15): 9016- 9025.
doi: 10.1039/C9RA08909H
8
LI M , WANG W , ZHU Y , et al. Molecular and cellular mechanisms for zoledronic acid-loaded magnesium-strontium alloys to inhibit giant cell tumors of bone[J]. Acta Biomaterialia, 2018, 77, 365- 379.
doi: 10.1016/j.actbio.2018.07.028
9
XU T , PENG X , JIANG J , et al. Comparative study on the microstructure and mechanical properties of Mg-Li-Al based alloys with yttrium and strontium addition[J]. Journal Wuhan University of Technology(Materials Science Edition), 2015, 30 (3): 626- 630.
doi: 10.1007/s11595-015-1201-y
10
HAN J , WAN P , GE Y , et al. Tailoring the degradation and biological response of a magnesium-strontium alloy for potential bone substitute application[J]. Materials Science and Engineering: C, 2016, 58, 799- 811.
doi: 10.1016/j.msec.2015.09.057
11
ZHANG W , ZHAO F J , HUANG D , et al. Strontium-substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration[J]. ACS Applied Materials & Interfaces, 2016, 8 (45): 30747- 30758.
12
KARGOZAR S , LOTFIBAKHSHAIESH N , AI J , et al. Synthesis, physico-chemical and biological characterization of strontium and cobalt substituted bioactive glasses for bone tissue engineering[J]. Journal of Non-Crystalline Solids, 2016, 449, 133- 140.
doi: 10.1016/j.jnoncrysol.2016.07.025
13
ZARE JALISE S , BAHEIRAEI N , BAGHERI F . The effects of strontium incorporation on a novel gelatin/bioactive glass bone graft: in vitro and in vivo characterization[J]. Ceramics International, 2018, 44 (12): 14217- 14227.
doi: 10.1016/j.ceramint.2018.05.025
14
MARX D , YAZDI A R , PAPINI M , et al. A review of the latest insights into the mechanism of action of strontium in bone[J]. Bone Reports, 2020, 12, 100273.
doi: 10.1016/j.bonr.2020.100273
15
LOURENO A H , TORRES A L , VASCONCELOS D P , et al. Osteogenic, anti-osteoclastogenic and immunomodulatory properties of a strontium-releasing hybrid scaffold for bone repair[J]. Materials Science and Engineering: C, 2019, 99, 1289- 1303.
doi: 10.1016/j.msec.2019.02.053
16
LUZA E P C G , CHAGASB B S D , ALMEIDAB N T D , et al. Resorbable bacterial cellulose membranes with strontium release for guided bone regeneration[J]. Materials Science and Engineering: C, 2020, 116, 111175.
doi: 10.1016/j.msec.2020.111175
LI R Y , LIU G C , LIANG H J , et al. Research progress of strontium-doped biomedical titanium alloys[J]. Chinese Journal of Tissue Engineering Research, 2017, 21 (2): 309- 314.
CAO Z W , YANG Y Q , ZHOU T , et al. Research progress on trace elements-modified titanium implant surfaces[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28 (2): 107- 111.
TANG J , ZHANG Z X , LI H W . Adhesion effect of Sr-incorporated TiO2 coating on osteoblast-like cells[J]. Jiangsu Medical Journal, 2017, 43 (15): 1066- 1071.
20
NGUYEN T D T, JANG Y S, LEE M H, et al. Effect of strontium doping on the biocompatibility of calcium phosphate-coated titanium substrates[J]. Journal of Applied Biomaterials & Functional Materials, 2019, 17(1): 2280800019826517
21
GENG Z , WANG R , ZHUO X , et al. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties[J]. Materials Science and Engineering: C, 2017, 71, 852- 861.
doi: 10.1016/j.msec.2016.10.079
22
NGUYEN T D T , JANG Y S , KIM Y K , et al. Osteogenesis-related gene expression and guided bone regeneration of a strontium-doped calcium-phosphate-coated titanium mesh[J]. ACS Biomaterials Science & Engineering, 2019, 5 (12): 6715- 6724.
23
LIN G F , ZHOU C , LIN M N , et al. Strontium-incorporated titanium implant surface treated by hydrothermal reactions promotes early bone osseointegration in osteoporotic rabbits[J]. Clinical Oral Implants Research, 2019, 30 (8): 777- 790.
doi: 10.1111/clr.13460
LI S J , ZHOU Q J , LI X C , et al. Effect of strontium-substituted brushite coating on osseointegration of implant anchorage in osteoporotic rats[J]. Journal of Clinical Stomatology, 2017, 33 (6): 323- 325.
doi: 10.3969/j.issn.1003-1634.2017.06.002
25
AADIL M , SAN C V , PAUL F , et al. The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implants[J]. PloS One, 2020, 15 (1): e0227232.
doi: 10.1371/journal.pone.0227232
LI X C , YAN Y T , FANG Q , et al. Gradient strontium-brushite coatings of medical titanium alloy surface[J]. Journal of Hebei University(Natural Science Edition), 2016, 36 (2): 129- 133.
doi: 10.3969/j.issn.1000-1565.2016.02.004
27
LIANG Y , LI H , XU J . Strontium coating by electrochemical deposition improves implant osseointegration in osteopenic models[J]. Experimental and Theraprutic Medicine, 2015, 9 (1): 172- 176.
doi: 10.3892/etm.2014.2038
28
TAO Z S , ZHOU W S , HE X W , et al. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats[J]. Materials Science and Engineering: C, 2016, 62, 226- 232.
doi: 10.1016/j.msec.2016.01.034
29
HUANG Y , ZENG H J , WANG X X , et al. Corrosion resistance and biocompatibility of Sr HAP/ZnO composite implant coating on titanium[J]. Applied Surface Science, 2014, 290 (13): 353- 358.
30
TENG H P , LIN H Y , HUANG Y H , et al. Formation of strontium-substituted hydroxyapatite coatings on bulk Ti and TiN-coated substrates by plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2018, 350, 1112- 1119.
doi: 10.1016/j.surfcoat.2018.02.017
31
KANTER B , VIKMAN A , BRUCKNER T , et al. Bone regeneration capacity of magnesium phosphate cements in a large animal model[J]. Acta Biomaterialia, 2018, 69, 352- 361.
doi: 10.1016/j.actbio.2018.01.035
32
CLAUS M , KATHARINA W , MARKUS M , et al. Osteoclast and osteoblast response to strontium-doped struvite coatings on titanium for improved bone integration[J]. Biomedical Engineering, 2020, 65 (5): 631- 641.
HAN T X , HU F , ZHANG Y M . Effect of titanium sheets with strontium loaded nanotubes on osteogenic differentiation of rat mesenchymal stem cells[J]. Beijing Journal of Stomatology, 2019, 27 (2): 61- 66.
34
HUANG Y , SHEN X , QIAO H , et al. Biofunctional Sr- and Si-loaded titania nanotube coating of Ti surfaces by anodization-hydrothermal process[J]. International Journal of Nanomedicine, 2018, 13, 633- 640.
doi: 10.2147/IJN.S147969
35
PARK J W . Positive regulation of porphyromonas gingivalis lipopolysaccharide-stimulated osteoblast functions by strontium modification of an SLA titanium implant surface[J]. Journal of Biomaterials Applications, 2020, 34 (6): 802- 811.
doi: 10.1177/0885328219878836
LIU C D , SHEN X Q , ZHANG Y L , et al. Effects of strontium-modified titanium surfaces on adhesion, migration and proliferation of bone marrow mesenchymal stem cells and expression of bone formation-related genes[J]. Chinese Journal of Tissue Engineering Research, 2020, 24 (7): 1009- 1015.
37
LIU C D , ZHANG Y L , WANG L C . A strontium-modified titanium surface produced by a new method and its biocompatibility in vitro[J]. Plos One, 2015, 10 (11): e01406669.
38
CHEN Y Q , HE F M . Fabrication and biological evaluation of the coating co-doped strontium and zinc nanoparticles on porous pure titanium surface by hydrothermal method[J]. Clinical Oral Implants Research, 2019, 30, 48- 48.
doi: 10.1111/clr.10_13509
FU Q , LI Y F , CHENG B K , et al. The effects of strontium micro/nano-scale coating on the biological activity of BMMSCs[J]. Chinese Journal of Conservative Dentistry, 2016, 26 (4): 208- 212.
40
LIU F W , LI Y F , LIANG J F , et al. Effects of micro/nano strontium-loaded surface implants on osseointegration in ovariectomized sheep[J]. Clinical Implant Dentistry & Related Research, 2019, 21 (2): 377- 385.
41
DING Y , YUAN Z , LIU P , et al. Fabrication of strontium-incorporated protein supramolecular nanofilm on titanium substrates for promoting osteogenesis[J]. Materials Science and Engineering: C, 2020, 111, 100851.
42
WANG J Y , LIU Y C , LIN G S , et al. Flame-sprayed strontium- and magnesium-doped hydroxyapatite on titanium implants for osseointegration enhancement[J]. Surface & Coatings Technology, 2020, 386, 125452.
43
ZHANG W J , CAO H L , ZHANG X C , et al. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration[J]. Nanoscale, 2016, 8 (9): 5291- 5301.
doi: 10.1039/C5NR08580B
44
SONG M S , ZENG R C , DING Y F , et al. Recent advances in biodegradation controls over Mg alloys for bone fracture management: a review[J]. Journal of Materials Science and Technology, 2019, 35 (4): 535- 544.
doi: 10.1016/j.jmst.2018.10.008
45
LIU J , LIN Y , BIAN D , et al. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone[J]. Acta Biomaterialia, 2019, 98, 50- 66.
doi: 10.1016/j.actbio.2019.03.009
ZENG R C , KONG L H , CHEN J , et al. Research progress on surface modification of magnesium alloys for medical applications[J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (1): 35- 43.
47
SADEGHI A , HASANPUR E , BAHMANI A , et al. Corrosion behaviour of AZ31 magnesium alloy containing various levels of strontium[J]. Corrosion Science, 2018, 141, 117- 126.
doi: 10.1016/j.corsci.2018.06.018
48
GU X N , LIN W T , LI D , et al. Degradation and biocompatibility of a series of strontium substituted hydroxyapatite coatings on magnesium alloys[J]. RSC Advances, 2019, 9 (26): 15013- 15021.
doi: 10.1039/C9RA02210D
49
AMARAVATHY P , KUMAR T S S . Bioactivity enhancement by Sr doped Zn-Ca-P coatings on biomedical magnesium alloy[J]. Journal of Magnesium and Alloys, 2019, 7 (4): 584- 596.
doi: 10.1016/j.jma.2019.05.014
50
MAKKAR P , KANG H J , PADALHIN A R , et al. In-vitro and in-vivo evaluation of strontium doped calcium phosphate coatings on biodegradable magnesium alloy for bone applications[J]. Applied Surface Science, 2020, 510, 145333.
doi: 10.1016/j.apsusc.2020.145333
51
KE C , POHL K , BIRBILIS N , et al. Protective strontium phosphate coatings for magnesium biomaterials[J]. Materials Science and Technology (United Kingdom), 2014, 30 (5): 521- 526.
LIN B P , ZHONG M , ZHENG C D , et al. Preparation and property of microwave-assisted strontium-substituted hydroxy-apatite coating on the AZ31 magnesium alloy[J]. Materials Protection, 2018, 51 (10): 35- 39.
53
YU N , CAI S , WANG F , et al. Microwave assisted deposition of strontium doped hydroxyapatite coating on AZ31 magnesium alloy with enhanced mineralization ability and corrosion resistance[J]. Ceramics International, 2017, 43 (2): 2495- 2503.
doi: 10.1016/j.ceramint.2016.11.050
54
WANG T L , YANG G Z , ZHOU W C , et al. One-pot hydrothermal synthesis, in vitro biodegradation and biocompatibility of Sr-doped nanorod/nanowire hydroxyapatite coatings on ZK60 magnesium alloy[J]. Journal of Alloys & Compounds, 2019, 799, 71- 82.
55
WEI P B , WANG B , LU X , et al. Bio-inspired immobilization of strontium substituted hydroxyapatite nanocrystals and alendronate on the surface of AZ31 magnesium alloy for osteoporotic fracture repair[J]. Surface & Coatings Technology, 2017, 313, 381- 390.
56
SHI W , ZHAO D P , SHANG P , et al. Strontium-doped hydroxyapatite coatings deposited on Mg-4Zn alloy: physical-chemical properties and in vitro cell response[J]. Rare Metal Materials and Engineering, 2018, 47 (8): 2371- 2380.
doi: 10.1016/S1875-5372(18)30194-2
57
BIRBILIS N , CHEN X B , EASTON M A , et al. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating[J]. Acta Biomaterialia, 2014, 10 (3): 1463- 1474.
doi: 10.1016/j.actbio.2013.11.016
58
KE C , SONG M S , ZENG R C , et al. Interfacial study of the formation mechanism of corrosion resistant strontium phosphate coatings upon Mg-3Al-4.3Ca-0.1Mn[J]. Corrosion Science, 2019, 151, 143- 153.
doi: 10.1016/j.corsci.2019.02.024
59
HAN J , WAN P , SUN Y , et al. Fabrication and evaluation of a bioactive Sr-Ca-P contained micro-arc oxidation coating on magnesium strontium alloy for bone repair application[J]. Journal of Materials Science and Technology, 2016, 32 (3): 233- 244.
doi: 10.1016/j.jmst.2015.11.012
60
YI Q Q , LIANG P C , LIANG D Y , et al. Multifunction Sr doped microporous coating on pure magnesium of antibacterial, osteogenic and angiogenic activities[J]. Ceramics International, 2021, 47 (6): 8133- 8141.
doi: 10.1016/j.ceramint.2020.11.168
61
ZHANG Y , SHEN X , MA P , et al. Composite coatings of Mg-MOF74 and Sr-substituted hydroxyapatite on titanium substrates for local antibacterial, anti-osteosarcoma and pro-osteogenesis applications[J]. Materials Letters, 2019, 241, 18- 22.
doi: 10.1016/j.matlet.2019.01.033
62
HE J , YE H X , LI Y L , et al. Cancellous-bone-like porous iron scaffold coated with strontium incorporated octacalcium phosphate nanowhiskers for bone regeneration[J]. ACS Biomaterials Science and Engineering, 2019, 5 (2): 509- 518.
doi: 10.1021/acsbiomaterials.8b01188
63
ZHENG Y F , LIU B . Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron[J]. Acta Biomaterialia, 2011, 7 (3): 1407- 1420.
doi: 10.1016/j.actbio.2010.11.001
64
RAY S , THORMANN U , EICHELROTH M , et al. Strontium and bisphosphonate coated iron foam scaffolds for osteoporotic fracture defect healing[J]. Biomaterials Guildford, 2018, 157 (1): 1- 16.