Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (12): 72-82    DOI: 10.11868/j.issn.1001-4381.2021.000293
  综述 本期目录 | 过刊浏览 | 高级检索 |
医用金属表面含锶涂层耐蚀性和生物相容性研究进展
孙文昕1, 樊丽君1, 郑钟印1, 邹玉红1,*(), 田景睿1, 曾荣昌2,3,*()
1 山东科技大学 化学与生物工程学院, 山东 青岛 266590
2 山东科技大学 材料科学与工程学院 高分子与材料化学系, 山东 青岛 266590
3 山东科技大学 材料科学与工程学院轻合金腐蚀实验室, 山东 青岛 266590
Research progress in corrosion resistance and biocompatibility of strontium-containing coatings on medical metal surface
Wen-xin SUN1, Li-jun FAN1, Zhong-yin ZHENG1, Yu-hong ZOU1,*(), Jing-rui TIAN1, Rong-chang ZENG2,3,*()
1 College of Chemical and Biological Engineering, Shandong University of Scicnce and Technology, Qingdao 266590, Shandong, China
2 Department of Polymer and Materials Chemistry, School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
3 Light Alloy Corrosion Laboratory, School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
全文: PDF(3556 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

随着全球人口老龄化进展以及骨关节疾病发病率的增加,人们对于骨修复医用金属材料的需求日益增多。生物医用金属材料包括不可降解钛及可降解金属镁和铁。金属材料在耐蚀性及骨整合方面存在一些不足,有必要对其表面改性进一步优化。锶元素具有促进成骨抑制破骨的作用,将其用作改性成分对提高医用金属表面骨细胞活性具有重要意义。本文主要对近年来医用金属钛、镁和铁表面掺锶涂层在耐蚀性和生物相容性方面进行了归纳及比较。重点介绍了锶与降解性、生物相容性好的载体(如羟基磷灰石、透钙磷石等)结合制备的复合涂层在钛合金、镁合金表面及铁合金表面提高骨整合性能的研究。最后,提出将锶元素与锌元素结合使得金属材料在促进骨修复的同时具有抗菌性能的建议。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙文昕
樊丽君
郑钟印
邹玉红
田景睿
曾荣昌
关键词 生物材料涂层骨修复耐蚀性生物相容性    
Abstract

With the progress of global population aging and the incidence rate of bone and joint diseases, the demand for bone repair medical metal materials is increasing.Bio-metallic materials include non-degradable (i.e. titanium) and degradable metals (i.e. magnesium and iron). However, metals are insufficient in corrosion resistance and osseointegration, so their surface modification needs to be optimized. It is noted that strontium (Sr) has the effect of promoting osteogenesis and inhibiting osteoclasts, and thus the use of Sr as a modified component is of great significance for improving the activity of bone cells on biomedical metal surfaces. In this paper, the corrosion resistance and biocompatibility of strontium doped coatings on titanium, magnesium and iron in recent years were summarized and compared.This article focuses on the research on improving the osseointegration performance of composite coatings prepared by combining strontium and carriers with good degradability and biocompatibility(such as hydroxyapatite, brushite, etc.) on the surface of titanium alloy, magnesium alloy and iron alloy. Finally, it is believed that the application of strontium-containing coatings on the surface of metal materials has a wide range of prospects, and it was proposed that the combination of strontium and zinc make the metal materials have antibacterial properties while promoting bone repair.It was expected to provide reference for promising clinical applications of strontium-doped coating.

Key wordsbiomaterial    strontium    coating    bone repair    corrosion resistance    biocompatibility
收稿日期: 2021-04-01      出版日期: 2021-12-20
中图分类号:  TG174.4  
基金资助:山东省自然科学基金项目(ZR2020ME011)
通讯作者: 邹玉红,曾荣昌     E-mail: zouyh69@126.com; rczeng@foxmail.com;rczeng@foxmail.com
作者简介: 曾荣昌(1964-), 男, 教授, 博士, 主要研究方向为镁合金腐蚀与防护, 联系地址: 山东省青岛市黄岛区前湾港路579号山东科技大学材料科学与工程学院轻合金腐蚀实验室(266590), E-mail: rczeng@foxmail.com
邹玉红(1969-), 女, 副教授, 博士, 主要研究方向为医用镁合金生物相容性研究, 联系地址: 山东省青岛市黄岛区前湾港路579号山东科技大学化学与生物工程学院生物工程系(266590), E-mail: zouyh69@126.com
引用本文:   
孙文昕, 樊丽君, 郑钟印, 邹玉红, 田景睿, 曾荣昌. 医用金属表面含锶涂层耐蚀性和生物相容性研究进展[J]. 材料工程, 2021, 49(12): 72-82.
Wen-xin SUN, Li-jun FAN, Zhong-yin ZHENG, Yu-hong ZOU, Jing-rui TIAN, Rong-chang ZENG. Research progress in corrosion resistance and biocompatibility of strontium-containing coatings on medical metal surface. Journal of Materials Engineering, 2021, 49(12): 72-82.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000293      或      http://jme.biam.ac.cn/CN/Y2021/V49/I12/72
Fig.1  甲苯胺蓝染色后带有植入物和骨移植物的胫骨近端的组织学检查[27]
(a)假手术组;(b)骨质疏松组;(c)植入掺锶涂层种植体组;(1)低倍图;(2)高倍图
Fig.2  生物潜能ST2干细胞在SLA(a)和SLA-Sr(b)样品表面扩散,肌动蛋白骨架(绿色)和黏着斑(红色)在4 h(1)和24 h(2)时的CLSM图像[35]
Coating Preparation method Cell Time/d OD value ALP(MTT) Ref
Substrate Coating Substrate Coating
Sr-HA Electro-deposition MG-63 1 (85%) (179%) [30]
NTSr Hydrothermal method BMSCs 7 1.80 2.50 [33]
Ti-Sr Hydrothermal method BMSCs 7 1.00 1.70 [36]
Ti-Sr Magnetic sputtering BMSCs 7 2.50 3.40 99 U/L 130 U/L [39]
Sr-Ca-P Cyclic precalcifification MC3T3-E1 7 1.18 1.35 [20]
Sr-Mg-HA Flame spraying Human embryonicpalatal mesenchymalpre-osteoblasts 11 0.95 1.38 (90%) (139%) [42]
Table 1  钛及其合金表面含锶涂层生物活性比较
Coating Preparationmethod Coating Substrate pH value Ref
Ecorr vsSCE/V Icorr/(μA·cm-2) Ecorr vsSCE/V Icorr/(μA·cm-2) Coating Substrate
SZCP Chemical conversion HER**2.25 mL·cm-1·h-1 HER** 4.35 mL·cm-1·h-1 [49]
Ca-Sr-P Chemical conversion 8.65 10.84 [50]
Sr-P Chemical conversion 1.21 0.30 1.88 42.50 [51]
Sr-HA Micro-wave deposition -1.27 2.60 -1.39 16.40 [52]
Sr-HA Micro-wave deposition -1.43 1.98 -1.70 58.03 7.40-7.79 10.40 [53]
Sr-HA Electro-deposition -1.47 17.55 -1.53 237.70 [48]
Sr-HA Hydrothermal method -1.35 1.65 -1.68 146.00 [54]
Sr-HA Hydrothermal method 30.80 56.60 8.40 8.60 [55]
Table 2  镁合金表面含锶涂层耐蚀性比较
Fig.3  培育12,24,48 h后3种支架的MC3T3-E1细胞的活力[62]
1 周思佳, 姜文学, 尤佳. 骨缺损修复材料: 现状与需求和未来[J]. 中国组织工程研究, 2018, 22 (14): 2251- 2258.
doi: 10.3969/j.issn.2095-4344.0754
1 ZHOU S J , JIANG W X , YOU J . Repair materials for bone defects: present status, needs and future developments[J]. Chinese Journal of Tissue Engineering Research, 2018, 22 (14): 2251- 2258.
doi: 10.3969/j.issn.2095-4344.0754
2 田景睿, 李慧, 邹玉红, 等. 医用镁合金表面肝素/蒙脱石涂层耐蚀性研究[J]. 表面技术, 2021, 50 (2): 66- 73.
2 TIAN J R , LI H , ZOU Y H , et al. Corrosion resistance of heparin/montmorillonite coating on biomedical magnesium alloy[J]. Surface Technology, 2021, 50 (2): 66- 73.
3 李峰, 殷正正, 张芬, 等. 生物医用金属表面水滑石涂层的研究进展[J]. 表面技术, 2021, 50 (2): 1- 12.
3 LI F , YIN Z Z , ZHANG F , et al. Research advances of layered double hydroxides coatings on biomedical metals[J]. Surface Technology, 2021, 50 (2): 1- 12.
4 张骏, 尤奇, 邹刚, 等. 锶元素在骨组织工程研究中的应用与进展[J]. 中国组织工程研究, 2019, 23 (18): 2936- 2940.
doi: 10.3969/j.issn.2095-4344.1712
4 ZHANG J , YOU Q , ZOU G , et al. Application and progress of strontium in bone tissue engineering[J]. Chinese Journal of Tissue Engineering Research, 2019, 23 (18): 2936- 2940.
doi: 10.3969/j.issn.2095-4344.1712
5 田波, 王加冕, 刘宇一, 等. 雷尼酸锶对骨质疏松大鼠假体骨整合的影响[J]. 中国临床医学, 2020, 27 (3): 433- 437.
5 TIAN B , WANG J M , LIU Y Y , et al. Effect of strontium ranelate on osseointegration of osteoporotic rats[J]. Chinese Journal of Clinical Medicine, 2020, 27 (3): 433- 437.
6 BORGES S G , MACHADO B , APARECIDA S , et al. Effects of strontium ranelate treatment on osteoblasts cultivated onto scaffolds of trabeculae bovine bone[J]. Journal of Bone & Mineral Metabolism, 2018, 36 (1): 73- 86.
7 GE C , CHEN F , MAO L , et al. Strontium ranelate-loaded POFC/β-TCP porous scaffolds for osteoporotic bone repair[J]. RSC Advances, 2020, 10 (15): 9016- 9025.
doi: 10.1039/C9RA08909H
8 LI M , WANG W , ZHU Y , et al. Molecular and cellular mechanisms for zoledronic acid-loaded magnesium-strontium alloys to inhibit giant cell tumors of bone[J]. Acta Biomaterialia, 2018, 77, 365- 379.
doi: 10.1016/j.actbio.2018.07.028
9 XU T , PENG X , JIANG J , et al. Comparative study on the microstructure and mechanical properties of Mg-Li-Al based alloys with yttrium and strontium addition[J]. Journal Wuhan University of Technology(Materials Science Edition), 2015, 30 (3): 626- 630.
doi: 10.1007/s11595-015-1201-y
10 HAN J , WAN P , GE Y , et al. Tailoring the degradation and biological response of a magnesium-strontium alloy for potential bone substitute application[J]. Materials Science and Engineering: C, 2016, 58, 799- 811.
doi: 10.1016/j.msec.2015.09.057
11 ZHANG W , ZHAO F J , HUANG D , et al. Strontium-substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration[J]. ACS Applied Materials & Interfaces, 2016, 8 (45): 30747- 30758.
12 KARGOZAR S , LOTFIBAKHSHAIESH N , AI J , et al. Synthesis, physico-chemical and biological characterization of strontium and cobalt substituted bioactive glasses for bone tissue engineering[J]. Journal of Non-Crystalline Solids, 2016, 449, 133- 140.
doi: 10.1016/j.jnoncrysol.2016.07.025
13 ZARE JALISE S , BAHEIRAEI N , BAGHERI F . The effects of strontium incorporation on a novel gelatin/bioactive glass bone graft: in vitro and in vivo characterization[J]. Ceramics International, 2018, 44 (12): 14217- 14227.
doi: 10.1016/j.ceramint.2018.05.025
14 MARX D , YAZDI A R , PAPINI M , et al. A review of the latest insights into the mechanism of action of strontium in bone[J]. Bone Reports, 2020, 12, 100273.
doi: 10.1016/j.bonr.2020.100273
15 LOURENO A H , TORRES A L , VASCONCELOS D P , et al. Osteogenic, anti-osteoclastogenic and immunomodulatory properties of a strontium-releasing hybrid scaffold for bone repair[J]. Materials Science and Engineering: C, 2019, 99, 1289- 1303.
doi: 10.1016/j.msec.2019.02.053
16 LUZA E P C G , CHAGASB B S D , ALMEIDAB N T D , et al. Resorbable bacterial cellulose membranes with strontium release for guided bone regeneration[J]. Materials Science and Engineering: C, 2020, 116, 111175.
doi: 10.1016/j.msec.2020.111175
17 李瑞延, 刘贯聪, 梁豪君, 等. 医用钛合金掺锶改性的研究与进展[J]. 中国组织工程研究, 2017, 21 (2): 309- 314.
17 LI R Y , LIU G C , LIANG H J , et al. Research progress of strontium-doped biomedical titanium alloys[J]. Chinese Journal of Tissue Engineering Research, 2017, 21 (2): 309- 314.
18 曹志炜, 杨雨青, 周陶, 等. 微量元素改性钛种植体表面研究进展[J]. 口腔疾病防治, 2020, 28 (2): 107- 111.
18 CAO Z W , YANG Y Q , ZHOU T , et al. Research progress on trace elements-modified titanium implant surfaces[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2020, 28 (2): 107- 111.
19 唐炬, 张震祥, 李洪伟. 锶离子二氧化钛涂层对成骨细胞的黏附作用[J]. 江苏医药, 2017, 43 (15): 1066- 1071.
19 TANG J , ZHANG Z X , LI H W . Adhesion effect of Sr-incorporated TiO2 coating on osteoblast-like cells[J]. Jiangsu Medical Journal, 2017, 43 (15): 1066- 1071.
20 NGUYEN T D T, JANG Y S, LEE M H, et al. Effect of strontium doping on the biocompatibility of calcium phosphate-coated titanium substrates[J]. Journal of Applied Biomaterials & Functional Materials, 2019, 17(1): 2280800019826517
21 GENG Z , WANG R , ZHUO X , et al. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties[J]. Materials Science and Engineering: C, 2017, 71, 852- 861.
doi: 10.1016/j.msec.2016.10.079
22 NGUYEN T D T , JANG Y S , KIM Y K , et al. Osteogenesis-related gene expression and guided bone regeneration of a strontium-doped calcium-phosphate-coated titanium mesh[J]. ACS Biomaterials Science & Engineering, 2019, 5 (12): 6715- 6724.
23 LIN G F , ZHOU C , LIN M N , et al. Strontium-incorporated titanium implant surface treated by hydrothermal reactions promotes early bone osseointegration in osteoporotic rabbits[J]. Clinical Oral Implants Research, 2019, 30 (8): 777- 790.
doi: 10.1111/clr.13460
24 李淑静, 周秋娟, 李昕畅, 等. 掺锶透钙磷石涂层对去势大鼠种植支抗骨整合影响[J]. 临床口腔医学杂志, 2017, 33 (6): 323- 325.
doi: 10.3969/j.issn.1003-1634.2017.06.002
24 LI S J , ZHOU Q J , LI X C , et al. Effect of strontium-substituted brushite coating on osseointegration of implant anchorage in osteoporotic rats[J]. Journal of Clinical Stomatology, 2017, 33 (6): 323- 325.
doi: 10.3969/j.issn.1003-1634.2017.06.002
25 AADIL M , SAN C V , PAUL F , et al. The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implants[J]. PloS One, 2020, 15 (1): e0227232.
doi: 10.1371/journal.pone.0227232
26 李忻畅, 闫玉婷, 方谦, 等. 钛合金表面梯度掺锶透钙磷石涂层研究[J]. 河北大学学报(自然科学版), 2016, 36 (2): 129- 133.
doi: 10.3969/j.issn.1000-1565.2016.02.004
26 LI X C , YAN Y T , FANG Q , et al. Gradient strontium-brushite coatings of medical titanium alloy surface[J]. Journal of Hebei University(Natural Science Edition), 2016, 36 (2): 129- 133.
doi: 10.3969/j.issn.1000-1565.2016.02.004
27 LIANG Y , LI H , XU J . Strontium coating by electrochemical deposition improves implant osseointegration in osteopenic models[J]. Experimental and Theraprutic Medicine, 2015, 9 (1): 172- 176.
doi: 10.3892/etm.2014.2038
28 TAO Z S , ZHOU W S , HE X W , et al. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats[J]. Materials Science and Engineering: C, 2016, 62, 226- 232.
doi: 10.1016/j.msec.2016.01.034
29 HUANG Y , ZENG H J , WANG X X , et al. Corrosion resistance and biocompatibility of Sr HAP/ZnO composite implant coating on titanium[J]. Applied Surface Science, 2014, 290 (13): 353- 358.
30 TENG H P , LIN H Y , HUANG Y H , et al. Formation of strontium-substituted hydroxyapatite coatings on bulk Ti and TiN-coated substrates by plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2018, 350, 1112- 1119.
doi: 10.1016/j.surfcoat.2018.02.017
31 KANTER B , VIKMAN A , BRUCKNER T , et al. Bone regeneration capacity of magnesium phosphate cements in a large animal model[J]. Acta Biomaterialia, 2018, 69, 352- 361.
doi: 10.1016/j.actbio.2018.01.035
32 CLAUS M , KATHARINA W , MARKUS M , et al. Osteoclast and osteoblast response to strontium-doped struvite coatings on titanium for improved bone integration[J]. Biomedical Engineering, 2020, 65 (5): 631- 641.
33 韩天啸, 呼峰, 张玉梅. 钛表面含锶纳米管化对大鼠间充质干细胞成骨分化影响的研究[J]. 北京口腔医学, 2019, 27 (2): 61- 66.
33 HAN T X , HU F , ZHANG Y M . Effect of titanium sheets with strontium loaded nanotubes on osteogenic differentiation of rat mesenchymal stem cells[J]. Beijing Journal of Stomatology, 2019, 27 (2): 61- 66.
34 HUANG Y , SHEN X , QIAO H , et al. Biofunctional Sr- and Si-loaded titania nanotube coating of Ti surfaces by anodization-hydrothermal process[J]. International Journal of Nanomedicine, 2018, 13, 633- 640.
doi: 10.2147/IJN.S147969
35 PARK J W . Positive regulation of porphyromonas gingivalis lipopolysaccharide-stimulated osteoblast functions by strontium modification of an SLA titanium implant surface[J]. Journal of Biomaterials Applications, 2020, 34 (6): 802- 811.
doi: 10.1177/0885328219878836
36 刘春栋, 申晓青, 张艳丽, 等. 钛表面锶改性后骨髓基质干细胞黏附、迁移、增殖及成骨相关基因的表达[J]. 中国组织工程研究, 2020, 24 (7): 1009- 1015.
36 LIU C D , SHEN X Q , ZHANG Y L , et al. Effects of strontium-modified titanium surfaces on adhesion, migration and proliferation of bone marrow mesenchymal stem cells and expression of bone formation-related genes[J]. Chinese Journal of Tissue Engineering Research, 2020, 24 (7): 1009- 1015.
37 LIU C D , ZHANG Y L , WANG L C . A strontium-modified titanium surface produced by a new method and its biocompatibility in vitro[J]. Plos One, 2015, 10 (11): e01406669.
38 CHEN Y Q , HE F M . Fabrication and biological evaluation of the coating co-doped strontium and zinc nanoparticles on porous pure titanium surface by hydrothermal method[J]. Clinical Oral Implants Research, 2019, 30, 48- 48.
doi: 10.1111/clr.10_13509
39 付亁, 李永锋, 程兵坤, 等. 微/纳米化载锶涂层对骨髓间充质干细胞生物活性影响的研究[J]. 牙体牙髓牙周病学杂志, 2016, 26 (4): 208- 212.
39 FU Q , LI Y F , CHENG B K , et al. The effects of strontium micro/nano-scale coating on the biological activity of BMMSCs[J]. Chinese Journal of Conservative Dentistry, 2016, 26 (4): 208- 212.
40 LIU F W , LI Y F , LIANG J F , et al. Effects of micro/nano strontium-loaded surface implants on osseointegration in ovariectomized sheep[J]. Clinical Implant Dentistry & Related Research, 2019, 21 (2): 377- 385.
41 DING Y , YUAN Z , LIU P , et al. Fabrication of strontium-incorporated protein supramolecular nanofilm on titanium substrates for promoting osteogenesis[J]. Materials Science and Engineering: C, 2020, 111, 100851.
42 WANG J Y , LIU Y C , LIN G S , et al. Flame-sprayed strontium- and magnesium-doped hydroxyapatite on titanium implants for osseointegration enhancement[J]. Surface & Coatings Technology, 2020, 386, 125452.
43 ZHANG W J , CAO H L , ZHANG X C , et al. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration[J]. Nanoscale, 2016, 8 (9): 5291- 5301.
doi: 10.1039/C5NR08580B
44 SONG M S , ZENG R C , DING Y F , et al. Recent advances in biodegradation controls over Mg alloys for bone fracture management: a review[J]. Journal of Materials Science and Technology, 2019, 35 (4): 535- 544.
doi: 10.1016/j.jmst.2018.10.008
45 LIU J , LIN Y , BIAN D , et al. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone[J]. Acta Biomaterialia, 2019, 98, 50- 66.
doi: 10.1016/j.actbio.2019.03.009
46 曾荣昌, 孔令鸿, 陈君, 等. 医用镁合金表面改性研究进展[J]. 中国有色金属学报, 2011, 21 (1): 35- 43.
46 ZENG R C , KONG L H , CHEN J , et al. Research progress on surface modification of magnesium alloys for medical applications[J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (1): 35- 43.
47 SADEGHI A , HASANPUR E , BAHMANI A , et al. Corrosion behaviour of AZ31 magnesium alloy containing various levels of strontium[J]. Corrosion Science, 2018, 141, 117- 126.
doi: 10.1016/j.corsci.2018.06.018
48 GU X N , LIN W T , LI D , et al. Degradation and biocompatibility of a series of strontium substituted hydroxyapatite coatings on magnesium alloys[J]. RSC Advances, 2019, 9 (26): 15013- 15021.
doi: 10.1039/C9RA02210D
49 AMARAVATHY P , KUMAR T S S . Bioactivity enhancement by Sr doped Zn-Ca-P coatings on biomedical magnesium alloy[J]. Journal of Magnesium and Alloys, 2019, 7 (4): 584- 596.
doi: 10.1016/j.jma.2019.05.014
50 MAKKAR P , KANG H J , PADALHIN A R , et al. In-vitro and in-vivo evaluation of strontium doped calcium phosphate coatings on biodegradable magnesium alloy for bone applications[J]. Applied Surface Science, 2020, 510, 145333.
doi: 10.1016/j.apsusc.2020.145333
51 KE C , POHL K , BIRBILIS N , et al. Protective strontium phosphate coatings for magnesium biomaterials[J]. Materials Science and Technology (United Kingdom), 2014, 30 (5): 521- 526.
52 林炳鹏, 钟梅, 郑程东, 等. 微波沉积法制备镁基掺锶羟基磷灰石涂层及其性能[J]. 材料保护, 2018, 51 (10): 35- 39.
52 LIN B P , ZHONG M , ZHENG C D , et al. Preparation and property of microwave-assisted strontium-substituted hydroxy-apatite coating on the AZ31 magnesium alloy[J]. Materials Protection, 2018, 51 (10): 35- 39.
53 YU N , CAI S , WANG F , et al. Microwave assisted deposition of strontium doped hydroxyapatite coating on AZ31 magnesium alloy with enhanced mineralization ability and corrosion resistance[J]. Ceramics International, 2017, 43 (2): 2495- 2503.
doi: 10.1016/j.ceramint.2016.11.050
54 WANG T L , YANG G Z , ZHOU W C , et al. One-pot hydrothermal synthesis, in vitro biodegradation and biocompatibility of Sr-doped nanorod/nanowire hydroxyapatite coatings on ZK60 magnesium alloy[J]. Journal of Alloys & Compounds, 2019, 799, 71- 82.
55 WEI P B , WANG B , LU X , et al. Bio-inspired immobilization of strontium substituted hydroxyapatite nanocrystals and alendronate on the surface of AZ31 magnesium alloy for osteoporotic fracture repair[J]. Surface & Coatings Technology, 2017, 313, 381- 390.
56 SHI W , ZHAO D P , SHANG P , et al. Strontium-doped hydroxyapatite coatings deposited on Mg-4Zn alloy: physical-chemical properties and in vitro cell response[J]. Rare Metal Materials and Engineering, 2018, 47 (8): 2371- 2380.
doi: 10.1016/S1875-5372(18)30194-2
57 BIRBILIS N , CHEN X B , EASTON M A , et al. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating[J]. Acta Biomaterialia, 2014, 10 (3): 1463- 1474.
doi: 10.1016/j.actbio.2013.11.016
58 KE C , SONG M S , ZENG R C , et al. Interfacial study of the formation mechanism of corrosion resistant strontium phosphate coatings upon Mg-3Al-4.3Ca-0.1Mn[J]. Corrosion Science, 2019, 151, 143- 153.
doi: 10.1016/j.corsci.2019.02.024
59 HAN J , WAN P , SUN Y , et al. Fabrication and evaluation of a bioactive Sr-Ca-P contained micro-arc oxidation coating on magnesium strontium alloy for bone repair application[J]. Journal of Materials Science and Technology, 2016, 32 (3): 233- 244.
doi: 10.1016/j.jmst.2015.11.012
60 YI Q Q , LIANG P C , LIANG D Y , et al. Multifunction Sr doped microporous coating on pure magnesium of antibacterial, osteogenic and angiogenic activities[J]. Ceramics International, 2021, 47 (6): 8133- 8141.
doi: 10.1016/j.ceramint.2020.11.168
61 ZHANG Y , SHEN X , MA P , et al. Composite coatings of Mg-MOF74 and Sr-substituted hydroxyapatite on titanium substrates for local antibacterial, anti-osteosarcoma and pro-osteogenesis applications[J]. Materials Letters, 2019, 241, 18- 22.
doi: 10.1016/j.matlet.2019.01.033
62 HE J , YE H X , LI Y L , et al. Cancellous-bone-like porous iron scaffold coated with strontium incorporated octacalcium phosphate nanowhiskers for bone regeneration[J]. ACS Biomaterials Science and Engineering, 2019, 5 (2): 509- 518.
doi: 10.1021/acsbiomaterials.8b01188
63 ZHENG Y F , LIU B . Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron[J]. Acta Biomaterialia, 2011, 7 (3): 1407- 1420.
doi: 10.1016/j.actbio.2010.11.001
64 RAY S , THORMANN U , EICHELROTH M , et al. Strontium and bisphosphonate coated iron foam scaffolds for osteoporotic fracture defect healing[J]. Biomaterials Guildford, 2018, 157 (1): 1- 16.
[1] 夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
[2] 王露, 陈雷雷, 徐凯, 娄明, 杜玉洁, 毛勇, 常可可. 前过渡族元素X对TiAlXN涂层结构与性能的作用[J]. 材料工程, 2022, 50(7): 69-79.
[3] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[4] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[5] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[6] 吴晓芳, 陈凯, 张德坤. 可降解水凝胶作为关节软骨修复材料的研究进展[J]. 材料工程, 2022, 50(2): 12-22.
[7] 万李, 王海蟒, 蔡谞, 胡刻铭, 岳文, 张洪玉. 骨软骨组织工程仿生梯度支架研究进展[J]. 材料工程, 2022, 50(2): 38-49.
[8] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[9] 陈倩, 赵雪阳, 尤德强, 曾戎, 于振涛, 李卫, 王小健. 3D打印纯钛骨支架表面掺银介孔生物活性玻璃涂层的性能研究[J]. 材料工程, 2022, 50(11): 34-45.
[10] 孙辉, 武会宾, 张游游, 袁睿, 张志慧. Cr含量对CrMnFeNi系高熵合金腐蚀行为的影响[J]. 材料工程, 2022, 50(11): 127-134.
[11] 余芳, 胡晓婧, 唐其金, 夏雨飘, 吕中, 杨浩. 具有可逆润湿性Bi2O3涂层在抗菌和油水分离中的应用[J]. 材料工程, 2021, 49(9): 167-174.
[12] 李红, 韩祎, 曹健, MARIUSZ Bober, JACEK Senkara. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1-10.
[13] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[14] 王海博, 李春燕, 李金玲, 王顺平, 寇生中. Fe基非晶合金粉末的研究进展[J]. 材料工程, 2021, 49(4): 34-51.
[15] 范泽文, 赵新宇, 邱帅, 王艳, 郭静, 权慧欣, 徐兰娟. 聚乳酸/聚乙二醇/羟基磷灰石多孔骨支架的3D打印制备及其生物相容性[J]. 材料工程, 2021, 49(4): 135-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn