Please wait a minute...
 
材料工程  2011, Vol. 0 Issue (6): 11-16    
  工艺 本期目录 | 过刊浏览 | 高级检索 |
复合材料胶接修补件力学性能的实验研究与数值模拟
李绍春, 熊峻江
北京航空航天大学飞行器运用系, 北京 100191
Experimental Investigation and Numerical Simulation on Mechanical Properties of Notched Metallic Panels Repaired with Bonded Composite Patch
LI Shaochun, XIONG Junjiang
Aircraft Department, Beihang University, Beijing 100191, China
全文: PDF(978 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 进行复合材料修补的铝合金板的静强度实验,测定载荷-位移曲线,分析破坏机理,并讨论了胶层材料性能、复合材料补片性能与厚度等因素对修补件静强度的影响;建立了修补件的三维有限元模型,模拟修补件的载荷-位移曲线和应力分布,验证了模型的有效性;根据应力分布计算结果和失效准则,预测初始损伤及裂纹产生的位置,并估算破坏强度,预测结果与实验数据吻合良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李绍春
熊峻江
关键词 胶接修补复合材料补片力学性能数值模拟破坏预测    
Abstract:Static strength tests of notched aluminum alloy panels repaired with bonded composite patch were conducted to determine the load-displacement curves and to understand failure mode and mechanism as well as to investigate the effects of the behaviour of adhesives,mechanical properties and thickness of composite patch on static strength of repaired panels.The three-dimensional finite element model was established to simulate the load-displacement curves and stress patterns of repaired panel,demonstrating the valid and practical use of the proposed model.From the simulated stress patterns and strength criterion as well as failure mode,location and strength were predicted,and the obtained results have a good agreement with the experiments.
Key wordsbonded repair    composite patch    mechanical property    numerical simulation    failure predicted
收稿日期: 2010-06-28      出版日期: 2011-06-20
中图分类号:  V258  
  TB115  
基金资助:国家自然科学基金资助项目(E050603);航空科学基金资助项目(20095251024)
通讯作者: 熊峻江(1966- ), 男, 教授, 博士生导师, 主要从事疲劳断裂可靠性方面研究, 联系地址: 北京市北京航空航天大学交通学院(100191), E-mail:jjxiong@buaa.edu.cn     E-mail: jjxiong@buaa.edu.cn
作者简介: 李绍春(1985- ), 男, 硕士研究生, 研究方向为复合材料胶接修补的数值模拟, E-mail:chunxiao8543@yahoo.com.cn
引用本文:   
李绍春, 熊峻江. 复合材料胶接修补件力学性能的实验研究与数值模拟[J]. 材料工程, 2011, 0(6): 11-16.
LI Shaochun, XIONG Junjiang. Experimental Investigation and Numerical Simulation on Mechanical Properties of Notched Metallic Panels Repaired with Bonded Composite Patch. Journal of Materials Engineering, 2011, 0(6): 11-16.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2011/V0/I6/11
[1] BAKER A A.Repair efficiency in fatigue-cracked aluminum components reinforced with boron/epoxy patches[J].Fatigue Fract Eng Mater Struct,1993,16(2):753-765.
[2] BAKER A A,JONES R.Bonded repair of aircraft structures[J].Dordrecht(The Netherlands):Martinus-Nijhoff Publishers,1988,9(5):145-147.
[3] BAKER A A,ROSE L R F,JONES R.Advances in the bonded composite repair of metallic aircraft structure[J].Amsterdam:Elsevier,2002,13(9):213-214.
[4] 童谷生,孙良新,刘英卫.飞机结构损伤的复合材料胶接修补技术研究进展[J].宇航材料工艺,2002,5(3):20-21.
[5] KUMAR A M,HAKEEM S A.Optimum design of symmetric composite patch repair to centre cracked metallic sheet[J].Composite Structures,2000,49(2):285-292.
[6] SCHUBBE J J,MALL S.Investigation of a cracked thick aluminum panel repaired with a bonded composite patch[J].Eng Fracture Mechanics,1999,63(1):305-323.
[7] RAO V V,SINGH R,MALHOTRA S K.Residual strength and fatigue life assessment of composite patch repaired specimens[J].Compos Part B:Eng,1999,30(6):621-627.
[8] HOSSEINI T H,SADEGHI G,DAGHYANI H R.Experimental fatigue crack growth and crack-front shape analysis of a symmetric repaired aluminum panels with glass/epoxy composite patches[J].Compos Struct,2005,71(3-4):401-406.
[9] KLUG J C,SUN C T.Large deflection effects of cracked aluminum plates repaired with bonded composites patches[J].Compos Struct,1998,42(3):291-296.
[10] JONES R,CHIU W K,SAWYER J P G.Composite repairs to cracks in thick metallic components[J].Compos Struct,1999,44(1):17-29.
[11] KLUG J C,MALEY S,SUN C T.Characterization of fatigue behavior of bonded composite repairs[J].Journal of aircraft,1999,36(5):1016-1022.
[12] 孙洪涛,刘元镛,彭俊.复合材料胶接修补问题的试验研究和分析[J].实验力学,1999,14(4):419-424.
[13] XIONG J J,SHENOI R A.Integrated experimental screening of bonded composites patch repair schemes to notched aluminum-alloy panels based on static and fatigue strength concepts[J].Composite Structures,2008,83(9):266-272.
[14] CHUNG K H,YANG W H.A study on the fatigue crack growth behavior of thick aluminum panels repaired with a composite patch[J].Composite Structures,2003,3(4):1-7.
[15] OKAFOR C A,SINGH N,ENEMUOH U E,et al.Design analysis and performance of adhesively bonded composite patch repair of cracked aluminum aircraft panels[J].Composite Structures,2005,71(2):258-270.
[16] OTERKUS E,BARUT A,MADENCI E,et al.Nonlinear analysis of a composite panel with a cutout repaired by a bonded tapered composite patch[J].International Journal of Solids and Structures,2005,42(7):5274-5306.
[17] SEKINE H,YAN B,YASUHO T.Numerical simulation study of fatigue crack growth behavior of cracked aluminum panels repaired with a FRP composite patch using combined BEM/FEM[J].Engineering Fracture Mechanics,2005,72(6):2549 -2563.
[18] TSAMASPHYROS G J,KANDERAKIS G N,KARALEKAS D,et al.Study of composite patch repair by analytical and numerical methods[J].Fatigue and Fracture of Engineering Materials and Structures,2001,24(1):631-632.
[19] OUINAS D,HEBBAR A,BACHIRBOUIADJRA B,et al.Numerical analysis of the stress intensity factors for repaired cracks from a notch with bonded composite semicircular patch[J].Composites,2009,40(6):804-810.
[20] LABOULSI S,MALL S.Analysis of cracked metallic structure with imperfectly bonded composite patch[J].American Institute of Aeronautics and Astronautics,1997,17(8):2799-2808.
[21] OUDAD W,BOUIADJRA B B,BELHOUARI M,et al.Analysis of the plastic zone size ahead of repaired cracks with bonded composite patch of metallic aircraft structures[J].Computational Materials Science,2009,46(5):950-954.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[3] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[4] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[5] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[6] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[7] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[8] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[11] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[12] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[13] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[14] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[15] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn