Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (2): 73-77    DOI: 10.11868/j.issn.1001-4381.2017.000771
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Nb-Si基合金表面Mo-Si-B涂层制备及抗氧化性能
庞洁1, 周春根2
1. 中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空 科技重点实验室, 北京 100095;
2. 北京航空航天大学 材料科学与工程学院, 北京 100191
Preparation and Oxidation Resistance of Mo-Si-B Coating on Nb-Si Based Alloy Surface
PANG Jie1, ZHOU Chun-gen2
1. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(1726 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为提高Nb-Si合金的抗高温氧化性能,在其表面制备Mo-Si-B涂层。通过Thermo-Calc计算的方法,从热力学角度分析NaF和AlF3两种激活剂对Si-B二元共渗的影响。结果表明:以NaF为激活剂时可以实现Si-B的二元共渗,而以AlF3为激活剂时,难以实现Si-B的二元共渗。通过爆炸喷涂结合包埋渗的方法在Nb-Si合金表面成功制备Mo-Si-B涂层,涂层主要由有弥散硼化物分布的MoSi2外层和未反应的Mo内层构成。涂层在1250℃氧化100h后涂层的氧化增重仅为1.52mg/cm2,良好的抗高温氧化性能是由于涂层在高温氧化过程中形成了一层具有保护性的硼硅酸盐层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞洁
周春根
关键词 Nb-Si合金Mo-Si-B涂层激活剂包埋渗氧化    
Abstract:Mo-Si-B coating was prepared on Nb-Si alloys to improve the high-temperature oxidation. The influence of the halide activators (NaF and AlF3) on Si-B co-depositing to obtain Mo-Si-B coating on Nb-Si alloys was analyzed by thermochemical calculations. The results show that NaF proves to be more suitable than AlF3 to co-deposit Si and B. Then Mo-Si-B can be coated on Nb-Si based alloys using detonation gun spraying of Mo followed by Si and B co-deposition. The fabricated coatings consist of outer MoSi2 layer with fine boride phase and inner unreacted Mo layer. The mass gain of the Mo-Si-B coating is 1.52mg/cm2 after oxidation at 1250℃ for 100h. The good oxidation resistance results in a protective borosilicate scale formed on the coating.
Key wordsNb-Si alloy    Mo-Si-B coating    activator    pack cementation    oxidation
收稿日期: 2017-06-20      出版日期: 2018-02-01
中图分类号:  TG174.4  
通讯作者: 周春根(1964-),男,教授,博士,研究方向为高温结构材料的高温腐蚀与防护,联系地址:北京航空航天大学新主楼D337(100191),cgzhou@buaa.edu.cn     E-mail: cgzhou@buaa.edu.cn
引用本文:   
庞洁, 周春根. Nb-Si基合金表面Mo-Si-B涂层制备及抗氧化性能[J]. 材料工程, 2018, 46(2): 73-77.
PANG Jie, ZHOU Chun-gen. Preparation and Oxidation Resistance of Mo-Si-B Coating on Nb-Si Based Alloy Surface. Journal of Materials Engineering, 2018, 46(2): 73-77.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000771      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/73
[1] BEWLAY B P, JACKSON M R, ZHAO J C, et al. A review of very high temperature Nb-silicide-based composites[J]. Metall Mater Trans:A, 2003,34(10):2043-2052.
[2] 牟仁德,申造宇,王占考. Nb/Nb5Si3微叠层材料及其制备技术[J]. 航空材料学报,2016,36(3):124-131. MU R D, SHEN Z Y, WANG Z K.Characteristics and preparation technologies of Nb/Nb5Si3 microlaminate[J]. Journal of Aeronautical Materials, 2016, 36(3):124-131.
[3] 郭丰伟,康永旺,肖程波. 稀土元素(La,Sm,Tb)合金化铌硅材料显微组织及室温断裂韧度[J]. 材料工程,2016,44(10):8-16. GUO F W, KANG Y W, XIAO C B. Microstructure and room temperature fracture toughness of Nb-Si materials alloyed by rare earth elements (La,Sm,Tb)[J]. Journal of Materials Engineering, 2016, 44(10):8-16.
[4] 朱祖芳. 有色金属的耐腐蚀性及其应用[M].北京:化学工业出版社, 1995. ZHU Z F. Corrosion resistance and the applications of the non-ferrous metal[M]. Beijing:Chemical Industry Press, 1995.
[5] JIE G, PANOS T, SHAO G S. A thermo-gravimetric and microstructural study of the oxidation of Nbss/Nb5Si3-based in situ composites with Sn addition[J]. Intermetallics, 2007, 15(3):270-281.
[6] ZELENITSAS K, TASKIROPOULOS P. Effect of Al, Cr and Ta addition on the oxidation behaviour of Nb-Ti-Si in situ composites at 800℃[J]. Materials Science and Engineering:A, 2006, 416(1/2):269-280.
[7] 赵群,于永泗. 铌基合金的抗高温氧化性研究[J]. 材料导报,2003,17(2):29-31. ZHAO Q, YU Y S. Research on Nb-based alloys' high temperature oxidation resistance[J]. Materials Review, 2003, 17(2):29-31.
[8] NICHOLLS J R. Advances in coating design for high performance gas turbines[J]. MRS Bulletin, 2003, 28(9):659-670.
[9] LIU Y Q, SHAO G, TASKIROPOULOS P. On the oxidation behaviour of MoSi2[J]. Intermetallics, 2001, 9(2):125-136.
[10] KNITTEL S, MATHIEU S, VILASI M. The oxidation behaviour of uniaxial hot pressed MoSi2 in air from 400 to 1400℃[J]. Intermetallics, 2011, 19(8):1207-1215.
[11] TIAN X D, GUO X P, SUN Z P, et al. Formation of B-modified MoSi2 coating on pure Mo prepared through HAPC process[J]. International Journal of Refractory Metals and Hard Materials, 2014,45:8-14.
[12] PARK J S, SAKIDJA R, PEREPEZKO J H. Coating designs for oxidation control of Mo-Si-B alloys[J]. Scripta Materialia, 2002, 46(11):765-770.
[13] SAKIDJA R, PARK J S, HAMMANN J, et al. Synthesis of oxidation resistant silicide coating on Mo-Si-B alloys[J]. Scripta Materialia, 2005, 53(6):723-728.
[14] 刘祥庆, 郭志猛, 马璨,等. 添加B对包埋渗法制备MoSi2涂层显微组织及静态抗氧化性能的影响[J]. 粉末冶金工业, 2012, 22(3):33-37. LIU X Q, GUO Z M, MA C, et al. Effect of B addition on the microstructure and static oxidation resistance of MoSi2 coating prepared by pack cementation[J]. Powder Metallurgy Industry, 2012, 22(3):33-37.
[15] RITT P, SAKIDJA R, PEREPEZKO J H. Mo-Si-B based coating for oxidation protection of SiC-C composites[J]. Surface and Coatings Technology, 2012, 206(19/20):4166-4172.
[16] LI Y L, SOBOYEJO W, RAPP R A. Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings[J]. Metallurgical and Materials Transactions:B, 1999, 30(3):495-504.
[17] GLESSON B, CHEUNG W H, COSTA W D, et al. The hot-corrosion behavior of novel co-deposited chromium-modified aluminide coatings[J]. Oxidation of Metals, 1992, 38(5/6):407-424.
[18] HE Y R, RAPP R A. Oxidation-resistant Ge-doped silicide coating on Cr-Cr2Nb alloys by pack cementation[J]. Materials Science and Engineering:A, 1997, 222(2):109-117.
[1] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[2] 邓凌峰, 覃昱焜, 彭辉艳, 连晓辉, 吴义强. 高温还原GO制备LiFePO4/石墨烯复合正极材料及表征[J]. 材料工程, 2018, 46(2): 9-15.
[3] 夏永辉, 高强, 王阳毅, 李梦娟. AZO中空纳米纤维的制备及光催化性能[J]. 材料工程, 2018, 46(2): 16-21.
[4] 刘洪丽, 邓青沂, 褚鹏. 超临界干燥制备PSNB气凝胶及其超疏水性能研究[J]. 材料工程, 2018, 46(2): 22-26.
[5] 刘小辉, 王帅星, 杜楠, 赵晴, 康佳, 刘欢欢. 电解液中Na2WO4对Ti2AlNb微弧氧化膜结构及摩擦磨损性能的影响[J]. 材料工程, 2018, 46(2): 84-92.
[6] 黄祖江, 蒋智秋, 董婉冰, 童庆, 李伟洲. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能[J]. 材料工程, 2018, 46(1): 44-52.
[7] 杨珍, 鲁金涛, 张夏妮, 赵新宝, 袁勇, 党莹樱, 尹宏飞, 谷月峰. 水蒸气温度对700℃先进超超临界锅炉候选合金GH2984氧化行为的影响[J]. 材料工程, 2018, 46(1): 74-82.
[8] 马慧, 高强, 夏永辉, 刘婉婉, 葛明桥. AZO@C柔性纳米纤维的制备与性能[J]. 材料工程, 2018, 46(1): 119-124.
[9] 史艳华, 赵杉林, 王玲, 梁平, 关学雷. 稀土Ce掺杂纳米晶Mn-Mo-Ce氧化物阳极及其选择电催化性能[J]. 材料工程, 2017, 45(9): 72-80.
[10] 朱雪梅, 张振卫, 王新建, 张彦生. Fe30Mn5Al合金氧化改性层的电化学腐蚀性能[J]. 材料工程, 2017, 45(8): 83-87.
[11] 陈高红, 胡远森, 于美, 刘建华, 李国爱. 包铝层和氧化时间对2E12铝合金硫酸阳极氧化及膜层性能的影响[J]. 材料工程, 2017, 45(7): 19-26.
[12] 郑玉婴, 曹宁宁. 氧化石墨烯纳米带杂化粒子和石墨烯纳米带的研究进展[J]. 材料工程, 2017, 45(6): 118-128.
[13] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129-137.
[14] 王逸群, 宋鹏, 季强, 廖红星, 陆建生. H2O和Y(O)对NiCoCrAl热障涂层高温氧化的影响[J]. 材料工程, 2017, 45(4): 65-69.
[15] 邓凌峰, 彭辉艳, 覃昱焜, 吴义强. 碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J]. 材料工程, 2017, 45(4): 121-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn