Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (2): 84-92    DOI: 10.11868/j.issn.1001-4381.2016.001366
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电解液中Na2WO4对Ti2AlNb微弧氧化膜结构及摩擦磨损性能的影响
刘小辉, 王帅星, 杜楠, 赵晴, 康佳, 刘欢欢
南昌航空大学 轻合金加工科学与技术国防重点 学科实验室, 南昌 330063
Effect of Na2WO4 in Electrolyte on Microstructure and Tribological Behavior of Micro-arc Oxidation Coatings on Ti2AlNb Alloy
LIU Xiao-hui, WANG Shuai-xing, DU Nan, ZHAO Qing, KANG Jia, LIU Huan-huan
National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(5954 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 选取硅酸盐/磷酸盐体系在Ti2AlNb表面制备微弧氧化陶瓷膜,利用SEM,XRD,XPS等研究了电解液中Na2WO4对氧化膜生长过程、微观结构及成分的影响,同时评价了Ti2AlNb微弧氧化膜的摩擦磨损行为。结果表明:硅酸盐/磷酸盐电解液中,氧化膜生长速率仅为0.08μm/min,膜层较疏松,表面存在大孔相连的"网状"结构,主要相组成为金红石TiO2、锐钛矿TiO2、Al2O3及Nb2O5。电解液中加入Na2WO4,缩短了Ti2AlNb合金的起弧时间、提高了氧化膜的生长速率、改善了膜层均匀性,同时在膜层中引入了少量WO3。此外,在Na2WO4参与下制备的微弧氧化膜的耐磨性更好。与Si3N4对磨时,Ti2AlNb合金发生严重的磨粒磨损,摩擦因数高达0.5~0.7;含4g/L Na2WO4电解液中制备的Ti2AlNb微弧氧化膜的摩擦因数、比磨损率分别为0.24及6.2×10-4mm3/(N·m),表面仅出现"鱼鳞状"疲劳磨损特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘小辉
王帅星
杜楠
赵晴
康佳
刘欢欢
关键词 Ti2AlNb合金微弧氧化Na2WO4摩擦磨损    
Abstract:Micro-arc oxidation (MAO) ceramic coatings were prepared on Ti2AlNb alloy in silicate/phosphate electrolytes with different concentrations of Na2WO4. The influence of Na2WO4 on the coating growth process, coating structure and composition was analyzed by SEM, XRD and XPS. The tribological behavior of MAO coatings was evaluated by the ball-disc wear test. The results show that the growth rate of MAO coating in electrolyte without Na2WO4 is only 0.08μm/min, meanwhile, the coating is loose and rough, and "networks" connecting with big pores exist on the coating surface.The main phase compositions of this coating are rutile TiO2, anatase TiO2, Al2O3, and Nb2O5. The addition of Na2WO4 in the electrolyte shortens the time before sparking of Ti2AlNb alloy, increases the growth rate of the coating, improves the uniformity of coating and meanwhile, a small amount of WO3 is introduced in the coating. Besides, MAO coatings formed in the participation of Na2WO4 have better wear resistance. Severe abrasive wear occurs when the test is made on Ti2AlNb alloy with Si3N4, the friction coefficient reaches 0.5-0.7. Both the friction coefficient and wear rate decrease obviously when Ti2AlNb is treated by MAO. The friction coefficient and wear rate of MAO coating prepared in the electrolyte with 4g/L Na2WO4 are 0.24 and 6.2×10-4mm3/(N·m), respectively. Only "fish scales" caused by fatigue wear appears on the coating surface.
Key wordsTi2AlNb alloy    micro-arc oxidation    Na2WO4    tribological behavior
收稿日期: 2016-11-16      出版日期: 2018-02-01
中图分类号:  TG174.451  
通讯作者: 王帅星(1985-),男,讲师,博士,主要研究方向为有色金属表面改性及电化学加工,联系地址:南昌航空大学材料科学与工程学院(330063),wsxxpg@126.com     E-mail: wsxxpg@126.com
引用本文:   
刘小辉, 王帅星, 杜楠, 赵晴, 康佳, 刘欢欢. 电解液中Na2WO4对Ti2AlNb微弧氧化膜结构及摩擦磨损性能的影响[J]. 材料工程, 2018, 46(2): 84-92.
LIU Xiao-hui, WANG Shuai-xing, DU Nan, ZHAO Qing, KANG Jia, LIU Huan-huan. Effect of Na2WO4 in Electrolyte on Microstructure and Tribological Behavior of Micro-arc Oxidation Coatings on Ti2AlNb Alloy. Journal of Materials Engineering, 2018, 46(2): 84-92.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001366      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/84
[1] 张建伟, 李世琼, 梁晓波, 等. Ti3Al和Ti2AlNb基合金的研究与应用[J]. 中国有色金属学报, 2010, 20(增刊1):336-341. ZHANG J W, LI S Q, LIANG X B, et al. Research and application of Ti3Al and Ti2AlNb based alloys[J].The Chinese Journal of Nonferrous Metals, 2010, 20(Suppl 1):336-341.
[2] 彭小敏, 夏长清, 王志辉, 等. TiAl基合金高温氧化及防护的研究进展[J]. 中国有色金属学报, 2010, 20(6):1116-1130. PENG X M, XIA C Q, WANG Z H, et al. Development of high temperature oxidation and protection of TiAl-based alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(6):1116-1130.
[3] WANG Q M, ZHANG K, GONG J, et al. NiCoCrAlY coatings with and without an Al2O3/Al interlayer on an orthorhombic Ti2AlNb-based alloy:oxidation and interdiffusion behaviors[J]. Acta Materialia, 2007, 55(4):1427-1439.
[4] LI H Q, WANG Q M, JIANG S M, et al. Ion-plated Al-Al2O3 films as diffusion barriers between NiCrAlY coating and orthorhombic-Ti2AlNb alloy[J]. Corrosion Science, 2010, 52(5):1168-1674.
[5] LIANG W P, XU Z, MIAO Q, et al. Double glow plasma surface molybdenizing of Ti2AlNb[J]. Surface and Coatings Technology, 2007, 201(9/11):5068-5071.
[6] 吴红艳, 张平则, 李建亮, 等. Ti2AlNb基合金表面渗铬层结构及其摩擦学性能[J].中国有色金属学报,2007,17(10):1656-1660. WU H Y, ZHANG P Z, LI J L, et al. Microstructure and tribological properties of surface plasma chromising layer of Ti2AlNb-based alloy[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(10):1656-1660.
[7] SHEN L, KONG L Y, XIONG T Y, et al. Preparation of TiAl3-Al composite coating by cold spraying[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(4):79-882.
[8] 熊玉明, 朱圣龙, 王福会. 带涂层的TiAlNb合金高温氧化行为[J]. 稀有金属材料与工程, 2006, 35(2):213-216. XIONG Y M, ZHU S L, WANG F H. Oxidation behaviors of TiAlNb with coatings at 800℃ and 900℃ respectively[J]. Rare Metal Materials and Engineering, 2006, 35(2):213-216.
[9] 高广睿, 李争显, 杜继红. TC4合金表面微弧氧化膜层耐蚀及摩擦性能研究[J].稀有金属材料与工程, 2008, 38(增刊4):602-605. GAO G R, LI Z X, DU J H. Wear and corrosion resistance properties of TC4 alloy micro-arc oxidized coating[J]. Rare Metal Materials and Engineering, 2008, 38(Suppl 4):602-605.
[10] 夏伶勤, 韩建民, 崔世海, 等. SiCp/A356复合材料微弧氧化陶瓷膜的生长规律与性能[J]. 材料工程, 2016, 44(1):40-46. XIA L Q, HAN J M, CUI S H, et al. Growth law and properties of ceramic coatings on SiCp/A356 composite fabricated by micro-arc oxidation[J]. Journal of Materials Engineering, 2016, 44(1):40-46.
[11] APELFELD A V, BESPALOVA O V, BORISOV A M. Application of the particle backscattering methods for the study of new oxide protective coatings at the surface of Al and Mg alloys[J]. Nuclear Instruments & Methods in Physics Research, 2000, 161/163(1):553-557.
[12] 杨巍, 蒋百灵, 时惠英. LY12铝合金微弧氧化膜层的形成与生长机制[J]. 中国有色金属学报, 2010, 20(10):1949-1954. YANG W, JIANG B L, SHI H Y. Formation and growth mechanism of microarc oxidation coating on LY12 aluminium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(10):1949-1954.
[13] WANG Y M, JIANG B L, LEI T Q, et al. Microarc oxidation coatings formed on Ti6Al4V in Na2SiO3 system solution:microstructure, mechanical and tribological properties[J]. Surface and Coatings Technology, 2006, 201(1):82-89.
[14] 林修洲, 郑健峰, 林志君, 等. TC4钛合金微弧氧化涂层的制备与微动磨损性能研究[J]. 航空材料学报, 2009, 29(2):43-47. LIN X Z, ZHENG J F, LIN Z J, et al.Preparation and fretting wear performance of micro oxidation coating on TC4 titanium alloy[J]. Journal of Aeronautical Materials, 2009, 29(2):43-47.
[15] 郝建民, 介万奇, 陈宏, 等. SiO2-3对TiAl合金微弧氧化陶瓷层的影响[J]. 稀有金属材料与工程, 2005, 34(9):1455-1459. HAO J M, JIE W Q, CHEN H, et al. The effect of SiO2-3 on micro-arc oxidization ceramic layer of TiAl alloy[J]. Rare Metal Materials and Engineering, 2005, 34(9):1455-1459.
[16] WU X Q, XIE F Q, HU Z C, et al. Effects of additives on corrosion and wear resistance of micro-arc oxidation coatings on TiAl alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(6):1032-1036.
[17] 李夕金, 程国安, 薛文斌, 等. Ti3Al基合金微弧氧化膜的制备和性质[J]. 航空材料学报, 2007, 27(5):1-6. LI X J, CHENG G A, XUE W B, et al. Fabrication and properties of microarc oxidation coatings on Ti3Al-based alloy[J]. Journal of Aeronautical Materials, 2007, 27(5):1-6.
[18] OUYANG J H, WANG Y H, LIU Z G, et al. Preparation and high temperature tribological properties of microarc oxidation ceramic coatings formed on Ti2AlNb alloy[J]. Wear, 2015, 330/331(22):239-249.
[19] WANG Y H, LIU Z G, OUYANG J H, et al. Preparation and high temperature oxidation resistance of microarc oxidation ceramic coatings formed on Ti2AlNb alloy[J]. Applied Surface Science, 2012, 258(22):8946-8952.
[20] WANG Y H, OUYANG J H, LIU Z G, et al. Microstructure and high temperature properties of two-step voltage-controlled MAO ceramic coatings formed on Ti2AlNb alloy[J]. Applied Surface Science, 2014, 307:62-68.
[21] TSENG C C, LEE J L, KUO T H, et al. The influence of sodium tungstate concentration and anodizing conditions on microarc oxidation (MAO) coatings for aluminum alloy[J]. Surface and Coatings Technology, 2012, 206(16):3437-3443.
[22] TORRES D L, PEREIRA M C, SILVA J W J, et al. Effect of phosphoric acid concentration and anodizing time on the properties of anodic films on titanium[J]. Journal of Engineering Science and Technology, 2015,10(7):841-848.
[23] 蒋百灵, 赵仁兵, 梁戈, 等. Na2WO4对铝合金微弧氧化陶瓷层形成过程及耐磨性的影响[J]. 材料导报, 2006, 20(9):155-157. JIANG B L, ZHAO R B, LIANG G, et al. Effect of Na2WO4 on properties of micro-arc oxidation (MAO) ceramic coatings and wear resistance of aluminum alloy[J].Materials Review, 2006, 20(9):155-157.
[24] OKAZAKI Y, OHOTA M, ITO Y, et al. Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films[J]. Materials Transactions Jim, 1997, 38(1):78-84.
[25] WAGNER C D. X-ray photoelectron spectroscopy with x-ray photons of higher energy[J]. Journal of Vacuum Science Technology, 1978, 15(2):518-523.
[26] GOMES M A B, BULHÕES L O D S, CASTRO S C D, et al. The electrochromic process at Nb2O5 electrodes prepared by thermal oxidation of niobium[J]. American Journal of Public Health, 2003, 93(2):288-295.
[27] BAYATI M R, ZARGAR H, MOLAEI R, et al. One step growth of WO3-loaded Al2O3, micro/nano-porous films by micro arc oxidation[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2010, 355(Suppl 1/3):187-192.
[28] BAYATI M R, GOLESTANI-FARD F, MOSHFEGH A Z, et al. A photocatalytic approach in micro arc oxidation of WO3-TiO2 nano porous semiconductors under pulse current[J]. Materials Chemistry and Physics, 2011, 128(3):427-432.
[29] YEROKHIN A L, NIE X, LEYLAND A, et al. Plasma electrolysis for surface engineering[J]. Surface and Coatings Technology, 1999, 122(2/3):73-93.
[1] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[2] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[3] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[4] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[5] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[6] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[7] 周梦林, 饶少凯, 周均, 郑照县, 肖衡, 郑靖. 微弧氧化处理镁合金在接骨板服役工况下的微动磨损特性[J]. 材料工程, 2018, 46(9): 80-87.
[8] 江泽琦, 冯彦寒, 方建华, 刘坪, 陈波水, 谷科城, 吴江. 含硫代磷酸铵盐润滑油在电磁场作用下的摩擦学性能[J]. 材料工程, 2018, 46(9): 95-100.
[9] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
[10] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
[11] 唐仕光, 陈泉志, 蒋智秋, 童庆, 董婉冰, 李伟洲. 激光重熔处理对铝合金微弧氧化膜组织与性能的影响[J]. 材料工程, 2018, 46(12): 157-164.
[12] 黄祖江, 蒋智秋, 董婉冰, 童庆, 李伟洲. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能[J]. 材料工程, 2018, 46(1): 44-52.
[13] 樊振中, 熊艳才, 陆政, 孙刚, 王胜强. Al-7Sn-1.1Ni-Cu-0.2Ti轴承合金微观组织与力学性能[J]. 材料工程, 2017, 45(6): 8-16.
[14] 金小越, 吴杰, 杨璇, 王彬, 陈琳, 曲尧, 薛文斌. 槽电压对纯铁表面液相等离子体电解硼碳氮三元共渗层摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 58-64.
[15] 王恩青, 岳建岭, 李淼磊, 李栋, 黄峰. Si含量对VAlSiN涂层微结构、力学性能和摩擦磨损性能的影响[J]. 材料工程, 2017, 45(4): 70-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn