Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (8): 93-97    DOI: 10.11868/j.issn.1001-4381.2016.08.015
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
含短切玻璃纤维的水玻璃精铸涂料的流变性
马海焦1,2, 刘向东1,2(), 吕凯1,2, 张慧1,2, 孟山旦1,2
1 内蒙古工业大学 材料科学与工程学院, 呼和浩特 010051
2 内蒙古工业大学 内蒙古自治区材料成型及控制工程重点实验室, 呼和浩特 010051
Rheological Behavior of Slurries Containing Short Glass Fibers for Preparation of Investment Casting Shell
Hai-jiao MA1,2, Xiang-dong LIU1,2(), Kai LYU1,2, Hui ZHANG1,2, Shan-dan MENG1,2
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Huhhot 010051, China
2 Key Laboratory of Materials Processing & Control Engineering of Inner Mongolia Autonomous Region, Inner Mongolia University of Technology, Huhhot 010051, China
全文: PDF(1210 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

将占耐火粉料0%~0.5%(质量分数)的短切玻璃纤维加入到制壳用涂料中,配制纤维增强水玻璃型壳用涂料。采用R/S流变仪测试不同纤维加入量条件下涂料的流变性,研究短切玻璃纤维加入量对涂料流变性的影响规律。结果表明:含纤维涂料的表观黏度随着剪切速率的增大而逐渐减小,且均具有剪切稀化的特性,其变化规律与不含纤维的涂料相似。含纤维涂料表观黏度值均高于不含纤维涂料;在相同剪切速率下,含0.3%纤维的涂料表观黏度值均高于其他涂料。随着短切玻璃纤维加入量的增大,涂料的高剪黏度值先增加后减小。含0.3%短切玻璃纤维涂料的高剪黏度值最大,约为102.6×10-3Pa·s,比不含纤维的涂料增大约31.9%;且该涂料的触变环面积达到最大值11.8Pa·s-1,触变性好。未发现短切玻璃纤维的加入对涂料的屈服值及悬浮性有显著影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马海焦
刘向东
吕凯
张慧
孟山旦
关键词 短切玻璃纤维涂料流变性精铸型壳    
Abstract

The short glass fibers were introduced into the slurries by 0%-0.5% (mass fraction of refractory powders) for preparation of fiber-reinforced shells for investment casting. The rheological properties of coatings containing different amounts of glass fibers were measured by R/S rheometer and the rheological behaviors of coatings were investigated. The results show that the apparent viscosities of coatings containing different amounts of glass fibers decrease with increasing shear rate, i.e., shear thinning behavior, similar to that of the coating without fibers. At the same shear rate, the apparent viscosities of coatings containing fibers are higher than that of the coating without fibers and the apparent viscosities of coatings containing 0.3% (mass fraction) fibers are higher than that of the others. The high shear viscosities of coatings containing fibers increase initially, but later decrease, with increasing amount of fibers. The high shear viscosity of the coating containing 0.3% fibers reaches a maximum value of 102.6×10-3Pa·s, increased by about 31.9%, in comparison to the coating without fibers. And this coating with a maximum thixotropical loop area value of 11.8Pa·s-1 exhibits an excellent thixotropical behavior. However, it is not found that there is a noticeable effect of the amount of glass fibers on the yield stress or suspensibility of coatings.

Key wordsshort glass fiber    slurry    rheological behavior    investment casting shell
收稿日期: 2015-01-15      出版日期: 2016-08-23
中图分类号:  TG249.5  
基金资助:教育部春晖计划基金资助项目(Z2011-062)
作者简介: 刘向东(1966-), 男, 教授, 博士生导师, 从事专业:液态金属成型基础理论与技术, 联系地址:内蒙古自治区呼和浩特市新城区爱民街49号内蒙古工业大学材料科学与工程学院(010051), liuxd@imut.edu.cn
引用本文:   
马海焦, 刘向东, 吕凯, 张慧, 孟山旦. 含短切玻璃纤维的水玻璃精铸涂料的流变性[J]. 材料工程, 2016, 44(8): 93-97.
Hai-jiao MA, Xiang-dong LIU, Kai LYU, Hui ZHANG, Shan-dan MENG. Rheological Behavior of Slurries Containing Short Glass Fibers for Preparation of Investment Casting Shell. Journal of Materials Engineering, 2016, 44(8): 93-97.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.08.015      或      http://jme.biam.ac.cn/CN/Y2016/V44/I8/93
Code of slurry Quartz powder/g Sodium silicate/g Short glass fiber/g Water/g
G-3-0 500 500 0.0 70
G-3-1 500 500 0.5 70
G-3-2 500 500 1.0 70
G-3-3 500 500 1.5 70
G-3-4 500 500 2.0 70
G-3-5 500 500 2.5 70
Table 1  涂料组成
Fig.1  含不同短切玻璃纤维涂料表观黏度随剪切速率的变化
Fig.2  纤维加入量对涂料高剪黏度的影响
Fig.3  涂料的剪切应力随剪切速率的变化
Code of slurry Thixotropical loop area/(Pa·s-1)
G-3-0 3.2
G-3-1 5.8
G-3-2 6.7
G-3-3 11.8
G-3-4 5.5
G-3-5 7.5
Table 2  涂料的触变环面积对比
Code of slurry Yield stress/Pa
G-3-0 0.7
G-3-1 0.7
G-3-2 0.7
G-3-3 0.7
G-3-4 0.7
G-3-5 0.7
Table 3  涂料的屈服值对比
Code of slurry Suspensibility/%
G-3-0 89
G-3-1 90
G-3-2 90
G-3-3 91
G-3-4 90
G-3-5 89
Table 4  涂料的悬浮性(静置24h)
1 PATTNAIK S , KARUNAKAR D B , JHA P K . Developments in investment casting process-a review[J]. Materials Processing Technology, 2012, 212 (11): 2332- 2348.
doi: 10.1016/j.jmatprotec.2012.06.003
2 吴鹏, 李璐. 玻璃纤维增强轻骨料混凝土力学性能及疲劳损伤研究[J]. 混凝土与水泥制品, 2014, (9): 52- 55.
2 WU P , LI L . Research on mechanical properties and fatigue life of glass fiber reinforced lightweight aggregate concrete matrix composites[J]. China Concrete and Cement Products, 2014, (9): 52- 55.
3 马景峰, 陈立君. 玻璃纤维增强混凝土的应用[J]. 玻璃纤维, 2005, 28 (3): 24- 27.
3 MA J F , CHEN L J . The application of glass fiber reinforced concrete[J]. Fiber Glass, 2005, 28 (3): 24- 27.
4 金雪霞, 杜娟. 玻璃纤维在环境领域的应用[J]. 玻璃纤维, 2005, 28 (1): 23- 25.
4 JIN X X , DU J . The application of glass fiber in the field of environment[J]. Fiber Glass, 2005, 28 (1): 23- 25.
5 戴福文, 陈林茂. 化学合成纤维在水泥混凝土中的应用[J]. 中国纤检, 2013, 33 (15): 85- 88.
5 DAI F W , CHEN L M . The application of synthetic fiber to concrete[J]. China Fiber Inspection, 2013, 33 (15): 85- 88.
6 张付东. 关于水泥混凝土中化学合成纤维的运用研究[J]. 当代化工, 2014, 43 (10): 2085- 2089.
6 ZHANG F D . Research on application of chemical synthetic fibers in cement concret[J]. Contemporary Chemical Industry, 2014, 43 (10): 2085- 2089.
7 许晓东, 董祥忠, 董毅, 等. 玻璃纤维增强聚丙烯复合材料研究进展[J]. 合成树脂及塑料, 2004, 21 (1): 66- 68.
7 XU X D , DONG X Z , DONG Y , et al. The review of glass fiber reinforced polypropylene composites[J]. Synthetic Resin and Plastics, 2004, 21 (1): 66- 68.
8 HOJJAT M , ETEMAD S G , BAGHERI R , et al. Rheological characteristics of non-Newtonian nanofluids:experimental investigation[J]. International Communications in Heat and Mass Transfer, 2011, 38 (2): 144- 148.
doi: 10.1016/j.icheatmasstransfer.2010.11.019
9 QIAN X , TONG Q Y , LIMC L T . Pullulan-sodium alginate based edible films:rheological properties of film forming solutions[J]. Carbohydrate Polymers, 2012, 87 (2): 1689- 1695.
doi: 10.1016/j.carbpol.2011.09.077
10 HORRI B A , DONG D H , SELOMULYA C , et al. Rheological behaviour of NiO/YSZ slurries for drying-free casting[J]. Powder Technology, 2012, 223 (6): 116- 122.
11 FENG Y H , YI Y J , XU B P , et al. Effect of fiber morphology on rheological properties of plant of fiber reinforced poly (butylenes succinate) composites[J]. Composites:Part B, 2013, 44 (6): 193- 199.
12 FENG Y H , ZHANG D W , QU J P , et al. Rheological properties of sisal fiber/poly (butylene succinate) composites[J]. Polymer Testing, 2011, 30 (1): 124- 130.
doi: 10.1016/j.polymertesting.2010.11.004
13 LIAO Y D , WU H J , YIN S , et al. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites[J]. Journal of Sol-Gel Science and Technology, 2012, 63 (3): 445- 456.
doi: 10.1007/s10971-012-2806-7
14 THIÉBAUD F , GELIN J C . Characterization of rheological behaviors of polypropylene/carbon nanotubes composites and modeling their flow in a twin-screw mixer[J]. Composites Science and Technology, 2010, 70 (4): 647- 656.
doi: 10.1016/j.compscitech.2009.12.020
15 王钊, 卢德宏, 蒋业华, 等. 玻璃纤维对陶瓷浆料的流动性及铸型强度的影响[J]. 特种铸造及有色合金, 2012, 33 (6): 546- 548.
15 WANG Z , LU D H , JIANG Y H , et al. The influence of fiber glass on liquidity and mold strength of the ceramic slurry[J]. Special Casting & Nonferrous Alloys, 2012, 33 (6): 546- 548.
[1] 易著武, 刘跃军, 刘小超, 杨坚, 李祥刚, 范淑红. 乙烯-乙烯醇共聚物/尼龙6复合材料的加工流变性能[J]. 材料工程, 2021, 49(8): 145-152.
[2] 万耀明, 李静, 梁璐, 熊瑜, 王彦. 聚硅氮烷/BN耐热复合涂层的制备及性能[J]. 材料工程, 2021, 49(10): 116-122.
[3] 陈舒怡, 陈双, 吴甲民, 何宁辉, 史玉升, 李晨辉, 张矿, 崔等, 王永均. 煤系高岭土光固化浆料的流变性能[J]. 材料工程, 2020, 48(3): 142-147.
[4] 占丽娜, 刘耀, 李昊, 刘绍军. 流延成型制备MoO3掺杂BiSmMoO6微波陶瓷基片的工艺研究[J]. 材料工程, 2019, 47(10): 120-125.
[5] 吴旺青, 刘毅, 向阳辉, 付继先. 环形对苯二甲酸丁二醇酯与催化剂混合体系的流变性能[J]. 材料工程, 2019, 47(10): 154-159.
[6] 王鑫, 赵雷, 杜星, 方伟, 何漩, 叶林峰. 含有机胶凝剂的Al2O3-SiO2系泡沫料浆的流变性能与固化特性[J]. 材料工程, 2017, 45(12): 106-111.
[7] 王岚, 王宇, 邢永明, 胡江三. 短期老化对橡胶粉改性沥青流变性能的影响[J]. 材料工程, 2016, 44(1): 54-59.
[8] 陈家才, 王旭东, 孙冬柏. 氯离子在有机涂层中的渗透及涂层失效过程的电化学阻抗谱研究[J]. 材料工程, 2011, 0(6): 52-57.
[9] 孟江燕, 王云英, 林翠, 刘枫. 钛合金化学铣切保护涂料的制备及性能研究[J]. 材料工程, 2010, 0(12): 5-7,34.
[10] 姚建省, 李志宏, 唐定中, 刘晓光, 肖克. Al2O3粉粒度对硅溶胶涂料及陶瓷型壳性能的影响[J]. 材料工程, 2009, 0(7): 23-27.
[11] 陈美玲, 庄立, 高宏. 丙烯酸锌复合防污涂料的制备与防污性能评价[J]. 材料工程, 2008, 0(6): 53-56.
[12] 张宏伟, 施建平, 孙丹丹. 纳米埃洛石对涂料及涂布纸性能的影响[J]. 材料工程, 2008, 0(10): 88-91.
[13] 姚义俊, 丘泰. 氮化铝陶瓷浆料流变性能的研究[J]. 材料工程, 2006, 0(9): 10-13.
[14] 咸才军, 孟惠民, 孙冬柏, 刘学军, 王旭东. 纳米材料在水性超薄膨胀型钢结构防火涂料中的应用[J]. 材料工程, 2006, 0(8): 40-44.
[15] 张卫国, 李林, 姚素薇, 郑国钦. 电化学方法评价纳米炭黑复合涂料的防腐性能[J]. 材料工程, 2006, 0(8): 49-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn