Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (8): 111-120    DOI: 10.11868/j.issn.1001-4381.2016.08.018
  综述 本期目录 | 过刊浏览 | 高级检索 |
环氧树脂及其复合材料微波固化研究进展
徐学宏1, 王小群1,*(), 闫超2, 王旭2
1 北京航空航天大学 材料科学与工程学院, 北京 100191
2 上海飞机制造有限公司, 上海 200436
Research Progress on Microwave Curing of Epoxy Resin and Its Composites
Xue-hong XU1, Xiao-qun WANG1,*(), Chao YAN2, Xu WANG2
1 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2 Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 200436, China
全文: PDF(1797 KB)   HTML ( 37 )  
输出: BibTeX | EndNote (RIS)      
摘要 

在介绍微波固化技术的原理及其优点的基础上,综述了环氧树脂及其复合材料的微波固化研究进展,重点讨论了微波固化对环氧树脂及其复合材料固化体系的固化速率、固化产物力学性能和热性能的影响,介绍了颗粒增强环氧树脂和纤维增强环氧树脂两种适合微波固化的复合材料系及工业应用关键技术问题,并对环氧树脂及其复合材料微波固化的应用前景进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐学宏
王小群
闫超
王旭
关键词 环氧树脂复合材料微波固化力学性能热性能    
Abstract

Research progress of microwave curing on epoxy resin and its composites was summarized on the basis of introducing the principle of microwave curing technology and its advantages. The paper focused on the effect of microwave curing on the curing rate of epoxy resin and its composites as well as the mechanical and thermal properties of cured products. Two suitable composite systems for wave curing of powder-strengthened epoxy and fiber-strengthened epoxy and a few key technological problems for industrial application are introduced. The application prospect of microwave curing on epoxy resin and its composites was also presented.

Key wordsepoxy resin    composite    microwave curing    mechanical property    thermal property
收稿日期: 2014-10-16      出版日期: 2016-08-23
中图分类号:  TB332  
基金资助:国家商用飞机制造工程技术研究中心创新基金资助(SAMC12-JS-15-015)
通讯作者: 王小群     E-mail: wangxiaoqun@buaa.edu.cn
作者简介: 王小群(1969-), 女, 副教授, 博士, 主要从事增韧树脂、高阻隔树脂及复合材料以及环氧树脂微波固化方面的研究, 联系地址:北京市海淀区学院路37号北京航空航天大学(100191), wangxiaoqun@buaa.edu.cn
引用本文:   
徐学宏, 王小群, 闫超, 王旭. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8): 111-120.
Xue-hong XU, Xiao-qun WANG, Chao YAN, Xu WANG. Research Progress on Microwave Curing of Epoxy Resin and Its Composites. Journal of Materials Engineering, 2016, 44(8): 111-120.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.08.018      或      http://jme.biam.ac.cn/CN/Y2016/V44/I8/111
Curing method Ea/(kJ·mol-1) lnk0/min-1
Thermal curing 94.84 31.06
1000W 4.44 0.13
2000W 3.99 0.29
3000W 1.90 2.01
Table 1  热固化与微波固化动力学参数[24]
Parameter Thermal Microwave
Ea/(kJ·mol-1) 69.0 65.7
ln(rate)/(mol·kg-1·min-1) 16.5 15.5
Table 2  热固化和微波固化动力学参数[28]
Fig.1  介质损耗因数与微波吸收能力的关系[33]
Fig.2  0°拉伸强度测试结果[61]
Fig.3  复合材料微波固化试样制备[67]
1 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24 (1): 1- 12.
1 DU S Y . Advanced composite materials and aerospace engineering[J]. Acta Materiea Compositea Sinica, 2007, 24 (1): 1- 12.
2 益小苏, 张明, 安学峰, 等. 先进航空树脂基复合材料研究与应用进展[J]. 工程塑料应用, 2009, 37 (10): 72- 78.
2 YI X S , ZHANG M , AN X F , et al. Development and application of advanced aeronautical polymer matrix composites[J]. Engineering Plastics Application, 2009, 37 (10): 72- 78.
3 初琳, 赵晓莉, 王丽娟. 树脂基复合材料固化技术发展现状[J]. 化工装备技术, 2013, 34 (1): 43- 48.
3 CHU L , ZHAO X L , WANG L J . Current status of curing technology for polymer matrix composite[J]. Chemical Equipment Technology, 2013, 34 (1): 43- 48.
4 孙晓峰, 马世宁, 朱乃姝, 等. 环氧树脂胶粘剂微波固化研究[J]. 中国工程机械学报, 2010, 8 (1): 107- 110.
4 SUN X F , MA S N , ZHU N S , et al. Study on microwave curing for epoxy resin adhesives[J]. Chinese Journal of Construction Machinery, 2010, 8 (1): 107- 110.
5 BOEY F Y C , YAP B H . Microwave curing of an epoxy-amine system:effect of curing agent on the glass-transition temperature[J]. Polymer Testing, 2001, 20 (8): 837- 845.
doi: 10.1016/S0142-9418(00)00070-2
6 刘学清, 王源升. 微波固化环氧树脂(E44/DDM)的热性能及膨胀性能[J]. 高分子材料科学与工程, 2004, 20 (3): 111- 113.
6 LIU X Q , WANG Y S . Microwave cure of epoxy resin (E44/DDM) and study on properties of thermal and expansion[J]. Polymer Materials Science & Engineering, 2004, 20 (3): 111- 113.
7 孙涛, 常新龙, 赖建伟, 等. 不同固化方式下环氧树脂体系固化行为及力学性能研究[J]. 固体火箭技术, 2012, 35 (5): 679- 682.
7 SUN T , CHANG X L , LAI J W , et al. Comparison of curing behaviors and mechanical properties of epoxy resin system in different curing approaches[J]. Journal of Solid Rocket Technology, 2012, 35 (5): 679- 682.
8 ALAZARD P , PALUMBO M , GOURDENNE A . Curing under continuous microwave (2450MHz) of thermosetting epoxy prepolymers:final statement[J]. Macromolecular Symposia, 2003, 199, 59- 72.
doi: 10.1002/(ISSN)1521-3900
9 谷晓昱, 张军营. 微波固化环氧树脂中非热效应的研究[J]. 高分子材料科学与工程, 2006, 22 (3): 183- 186.
9 GU X Y , ZHANG J Y . Non-thermal effect of microwave radiation on curing of epoxy resin[J]. Polymer Materials Science & Engineering, 2006, 22 (3): 183- 186.
10 MARAND E , BAKER K R , GRAYBEAL J D . Comparison of reaction-mechanisms of epoxy-resins undergoing thermal and microwave cure from in situ measurements of microwave dielectric-properties and infrared-spectroscopy[J]. Macromolecules, 1992, 25 (8): 2243- 2252.
doi: 10.1021/ma00034a028
11 WEI J H , HAWLEY M C , DELONG J D , et al. Comparison of microwave and thermal cure of epoxy resins[J]. Polymer Engineering and Science, 1993, 33 (17): 1132- 1140.
doi: 10.1002/(ISSN)1548-2634
12 JORDAN C , GALY J , PASCAULT J P , et al. Comparison of microwave and thermal cure of an epoxy/amine matrix[J]. Polymer Engineering and Science, 1995, 35 (3): 233- 239.
doi: 10.1002/pen.760350303
13 BAI S L , DJAFARI V , ANDREANI M , et al. A comparative study of the mechanical behavior of an epoxy resin cured by microwaves with on cured thermally[J]. European Polymer Journal, 1995, 31 (9): 875- 884.
doi: 10.1016/0014-3057(95)00042-9
14 YARLAGADDA K D V P , HSU S H . Experimental studies on comparison of microwave curing and thermal curing of epoxy resins used for alternative mould materials[J]. Journal of Materials Processing Technology, 2004, 155 (1-3): 1532- 1538.
15 任重远, 罗亦麟, 张立峰. 热固性树脂的微波固化[J]. 热固性树脂, 1995, 3, 38- 40.
15 REN C Y , LUO Y L , ZHANG L F . Microwave curing of thermosetting resin[J]. Thermosetting Resin, 1995, 3, 38- 40.
16 宋世红, 穆中国. 环氧树脂/DMP30体系的微波固化及性能研究[J]. 中国胶粘剂, 2008, 17 (6): 27- 30.
16 SONG S H , MU Z G . Study on microwave curing and performance in epoxy resin/DMP30 system[J]. China Adhesives, 2008, 17 (6): 27- 30.
17 吴轲, 张炜, 曾金芳. 微波固化环氧/酸酐体系的研究[J]. 固体火箭技术, 2002, 25 (2): 74- 76.
17 WU K , ZHANG W , ZENG J F . Study on microwave cured epoxy/anhydride resin[J]. Journal of Solid Rocket Technology, 2002, 25 (2): 74- 76.
18 ZHOU J , SHI C , MEI B C , et al. Research on the technology and the mechanical properties of the microwave processing of polymer[J]. Journal of Materials Processing Technology, 2003, 137 (1-3): 156- 158.
doi: 10.1016/S0924-0136(02)01082-8
19 TANRATTANAKUL V , SAETIAW K . Comparison of microwave and thermal cure of epoxy-anhydride resins:mechanical properties and dynamic characteristics[J]. Journal of Applied Polymer Science, 2005, 97 (4): 1442- 1461.
doi: 10.1002/(ISSN)1097-4628
20 钟发春, 贺江平, 王晓川, 等. 微波固化环氧泡沫材料的结构和性能研究[J]. 材料导报, 2006, 20 (8): 149- 151.
20 ZHONG F C , HE J P , WANG X C , et al. Structure and properties of epoxy foams prepared by microwave irradiation[J]. Materials Review, 2006, 20 (8): 149- 151.
21 耿杰, 李勇, 陈云雷, 等. 环氧树脂聚酰胺体系微波固化特性研究[J]. 玻璃钢/复合材料, 2013, 5, 7- 13.
21 GENG J , LI Y , CHEN Y L , et al. Study on curing behavior of epoxy polymide microwave curing system[J]. Fiber Reinforced Plastics/Composites, 2013, 5, 7- 13.
22 NAVABPOUR P , NESBITT A , MANN T , et al. Comparison of the curing kinetics of a DGEBA/acid anhydride epoxy resin system using differential scanning calorimetry and a microwave-heated calorimeter[J]. Journal of Applied Polymer Science, 2007, 104 (3): 2054- 2063.
doi: 10.1002/(ISSN)1097-4628
23 WALLANCE M , ATTWOOD D , DAY R , et al. Investigation of the microwave curing of the PR500 epoxy resin system[J]. Journal of Materials Science, 2006, 41 (18): 5862- 5869.
doi: 10.1007/s10853-006-0321-3
24 SACCONE G , AMENDOLA E , ACIERNO D . Conventional and microwave curing process of epoxy systems:kinetic analysis and characterization[J]. Microwave and Optical Technology Letters, 2009, 51 (11): 2777- 2783.
doi: 10.1002/mop.v51:11
25 MIJOVIC J , WIJAYA J . Comparative calorimetric study of epoxy cure by microwave vs thermal energy[J]. Macromolecules, 1990, 23 (15): 3671- 3674.
doi: 10.1021/ma00217a021
26 MIJOVIC J , CORSO W V , NICOLAIS L , et al. In-situ real-time study of crosslinking kinetics in thermal and microwave fields[J]. Polymers for Advanced Technologies, 1998, 9 (4): 231- 243.
doi: 10.1002/(ISSN)1099-1581
27 NAVABPOUR P , NESBITT A , DEGAMBER B , et al. Comparison of the curing kinetics of the RTM6 epoxy resin system using differential scanning calorimetry and a microwave-heated calorimeter[J]. Journal of Applied Polymer Science, 2006, 99 (6): 3658- 3668.
doi: 10.1002/(ISSN)1097-4628
28 HILL D J T , GEORGE G A , ROGERS D G . A systematic study of the microwave and thermal cure kinetics of the DGEBA/DDS and DGEBA/DDM epoxy-amine resin systems[J]. Polymers for Advanced Technologies, 2002, 13 (5): 353- 362.
doi: 10.1002/(ISSN)1099-1581
29 ZONG L , KEMPEL L C , HAWLEY M C . Dielectric studies of three epoxy resin systems during microwave cure[J]. Polymer, 2005, 46 (8): 2638- 2645.
doi: 10.1016/j.polymer.2005.01.083
30 NADIR B , ALBERT G . Microwave curing of epoxy resins with diaminodiphenylmethane-IV. average electrical power and pulse length dependence in pulsed irradiation[J]. European Polymer Journal, 1988, 24 (3): 265- 270.
doi: 10.1016/0014-3057(88)90220-0
31 FU B , HAWLEY M C . Comparative study of continuous-power and pulsed-power microwave curing of epoxy resins[J]. Polymer Engineering and Science, 2000, 40 (10): 2133- 2143.
doi: 10.1002/(ISSN)1548-2634
32 RAO S , RAO R . Cure studies on bifunctional epoxy matrices using a domestic microwave oven[J]. Polymer Testing, 2008, 27 (5): 645- 652.
doi: 10.1016/j.polymertesting.2008.04.005
33 THOSTENSON E T , CHOU T W . Microwave processing fundamentals and applications[J]. Composites Part A:Applied Science and Manufacturing, 1999, 30 (9): 1055- 1071.
doi: 10.1016/S1359-835X(99)00020-2
34 张宗华, 刘刚, 张晖, 等. 纳米氧化铝颗粒对高性能环氧树脂玻璃化转变温度的影响[J]. 材料工程, 2014, (9): 39- 44.
34 ZHANG Z H , LIU G , ZHANG H , et al. Influence of nano-alumina particles on glass transition temperature of high-performance epoxy resin[J]. Journal of Materials Engineering, 2014, (9): 190- 195.
35 GOURDENNE A . Interactions between microwaves and model composite materials[J]. Polymeric Materials Science and Engineering, 1992, 66, 430- 431.
36 YARLAGADDA P K D V . Study on microwave dielectric properties of epoxy resin mixtures used for rapid product development[J]. Acta Metallurgica Sinica (English Letters), 2001, 14 (1): 1- 12.
37 欧忠文, 白敏, 陈云, 等. 纳米银对环氧树脂的增韧改性及其微波固化行为[J]. 稀有金属材料与工程, 2012, 41 (4): 649- 652.
37 OU Z W , BAI M , CHEN Y , et al. Role of silver nanoparticles in toughening modification of epoxy resin and microwave curing performance[J]. Rare Metal Materials and Engineering, 2012, 41 (4): 649- 652.
38 孙晓峰, 马世宁, 朱乃姝, 等. 纳米微波吸收剂对改性环氧胶粘剂微波固化性能的影响[J]. 郑州大学学报(工学版), 2008, 29 (4): 14- 16.
38 SUN X F , MA S N , ZHU N S , et al. Effect of nanometer microwave-absorber on microwave curing properties of modified epoxy adhesive[J]. Journal of Zhengzhou University (Engineering Science), 2008, 29 (4): 14- 16.
39 ZHOU S J, HAWLEY M C.A study of effect of conducting additives on microwave heating and curing rates of epoxy[A].Proceedings to the 46th International SAMPE Symposium and Exhibition[C].Long Beach, USA:Society for the Advancement of Material and Process Engineering, 2001.
40 RANGARI V K , BHUYAN M S , JEELANI S . Microwave curing of CNFs/EPON-862 nanocomposites and their thermal and mechanical properties[J]. Composites Part A:Applied Science and Manufacturing, 2011, 42 (7): 849- 858.
doi: 10.1016/j.compositesa.2011.03.014
41 RANGARI V K , BHUYAN M S , JEELANI S . Microwave processing and characterization of EPON 862/CNT nanocomposites[J]. Materials Science and Engineering B:Solid-State Materials for Advanced Technology, 2010, 168 (1-3): 117- 121.
doi: 10.1016/j.mseb.2010.01.013
42 FOTIOU I , BALTOPOULOS A , VAVOULIOTIS A , et al. Microwave curing of epoxy polymers reinforced with carbon nanotubes[J]. Journal of Applied Polymer Science, 2013, 129 (5): 2754- 2764.
doi: 10.1002/app.39003
43 ZHOU S, WOOD A, BOYAPATI K, et al.Epoxy/organoclay nanocomposites synthesized with thermal and microwave methods[A].Proceedings to Global Plastics Environmental Conference 2004-Plastics:Helping Grow a Greener Environment[C]. Connet-ticut, USA:Society of Plastics Engineers, 2004.
44 UYANIK N , RIZA E A , FATIH C M , et al. Epoxy nanocomposites curing by microwaves[J]. Polymer Engineering and Science, 2006, 46 (8): 1104- 1110.
doi: 10.1002/(ISSN)1548-2634
45 CHAOWASAKOO T , SOMBATSOMPOP N . Mechanical and morphological properties of fly ash/epoxy composites using conventional thermal and microwave curing methods[J]. Composites Science and Technology, 2007, 67 (11-12): 2282- 2291.
doi: 10.1016/j.compscitech.2007.01.016
46 刘学清, 王源升. 微波固化环氧树脂/SiO2复合材料及其性能的研究[J]. 热固性树脂, 2003, 18 (2): 8- 11.
46 LIU X Q , WANG Y S . Epoxy resin/silicon dioxide composite cured by microwave and its properties[J]. Thermosetting Resin, 2003, 18 (2): 8- 11.
47 LEE W I , SPRINGER G S . Interaction of electromagnetic radiation with organic matrix composites[J]. Journal of Composite Materials, 1984, 18 (4): 357- 386.
doi: 10.1177/002199838401800404
48 HO Y S , SCHOENA P . The permittivity at X-band frequencies of nickel-coated graphite fibers in an epoxy matrix[J]. Journal of Materials Research, 1994, 9 (1): 246- 251.
doi: 10.1557/JMR.1994.0246
49 DUBKOVA V I , BORDUSOV S V , DOSTANKO A P , et al. Investigation of the effect of a microwave field on the curing process and properties of epoxy compositions[J]. Journal of Engineering Physics and Thermophysics, 1997, 70 (6): 977- 982.
50 THOSTENSON E T , CHOU T W . Microwave and conventional curing of thick-section thermoset composite laminates:experiment and simulation[J]. Polymer Composites, 2001, 22 (2): 197- 212.
doi: 10.1002/(ISSN)1548-0569
51 YUE C Y , LOOI H C . Influence of thermal and microwave processing on the mechanical and interfacial properties of a glass/epoxy composite[J]. Composites, 1995, 26 (11): 767- 773.
doi: 10.1016/0010-4361(95)98197-S
52 BOEY F Y C , LEE T H . Electromagnetic radiation curing of an epoxy/fibre glass reinforced composite[J]. Radiation Physics and Chemistry, 1991, 38 (4): 419- 423.
53 BAI S L , DJAFARI V . Interfacial properties of microwave cured composites[J]. Composites, 1995, 26 (9): 645- 651.
doi: 10.1016/0010-4361(95)98913-6
54 RAO R M V G K , RAO S , SRIDHARA B K . Studies on tensile and interlaminar shear strength properties of thermally cured and microwave cured glass-epoxy composites[J]. Journal of Reinforced Plastics and Composites, 2006, 25 (7): 783- 795.
doi: 10.1177/0731684406063542
55 TANRATTANAKUL V , JAROENDEE D . Comparison between microwave and thermal curing of glass fiber-epoxy composites:effect of microwave-heating cycle on mechanical properties[J]. Journal of Applied Polymer Science, 2006, 102 (2): 1059- 1070.
doi: 10.1002/(ISSN)1097-4628
56 MOOTERI P S , SRIDHARA B K , RAO S , et al. Studies on mechanical behavior of microwave and thermally cured glass fiber reinforced polymer composites[J]. Journal of Reinforced Plastics and Composites, 2006, 25 (5): 503- 512.
doi: 10.1177/0731684406058290
57 SGRICCIA N , HAWLEY M C . Thermal, morphological, and electrical characterization of microwave processed natural fiber composites[J]. Composites Science and Technology, 2007, 67 (9): 1986- 1991.
doi: 10.1016/j.compscitech.2006.07.031
58 DAY R J , YAU S H C , HEWSON K D . Effect of microwave post-curing on micromechanics of model Kevlar-epoxy composites[J]. Plastics, Rubber and Composites Processing and Applications, 1998, 27 (5): 213- 219.
59 陈名华, 姚武文, 王新坤, 等. 微波固化碳纤维/环氧树脂胶的研究[J]. 粘结, 2005, 26 (6): 13- 15.
59 CHEN M H , YAO W W , WANG X K , et al. Study on microwave curing of epoxy resin adhesive[J]. Adhesion in China, 2005, 26 (6): 13- 15.
60 PAPARGYRIS D A , DAY R J , NESBITT A , et al. Comparison of the mechanical and physical properties of a carbon fibre epoxy composite manufactured by resin transfer moulding using conventional and microwave heating[J]. Composites Science and Technology, 2008, 68 (7): 1854- 1861.
61 KWAK M, ROBINSON P, BISMARCK A, et al.Curing of composite materials using the recently developed HEPHAISTOS microwave[A].Proceedings to the 18th International Conference on Composites Materials[C].Jeju Island, Korea:International Committee on Composite Materials, 2011.
62 SUN X , MA S , LIU H . Research on properties of carbon fiber/epoxy resin composite material by microwave curing[J]. Rare Metal Materials and Engineering, 2012, 41 (Suppl 1): 422- 424.
63 陈萍, 徐学宏, 李振忠, 等. 一种碳纤维/环氧预浸料的微波固化特性及其层合板的微波固化工艺研究[J]. 材料工程, 2016, 44 (4): 45- 50.
63 CHEN P , XU X H , LI Z Z , et al. Curing behavior of a carbon fiber/epoxy prepreg and curing processing of laminates with microwave radiation[J]. Journal of Materials Engineering, 2016, 44 (4): 45- 50.
64 朱乃姝, 马世宁, 孙晓峰, 等. 固化方式和纤维表面处理对纤维-树脂界面化学组成的影响[J]. 中国工程机械学报, 2010, 8 (1): 111- 114.
64 ZHU N S , MA S N , SUN X F , et al. Impacts of curing method and fiber surface treatment on chemical composition of carbon fiber and epoxy resin interface[J]. Chinese Journal of Construction Machinery, 2010, 8 (1): 111- 114.
65 孙晓峰, 马世宁, 朱乃姝, 等. 微波固化改性环氧树脂/碳纤维复合材料研究[J]. 材料工程, 2008, (增刊1): 190- 195.
65 SUN X F , MA S N , ZHU N S , et al. Microwave curing modified epoxy resin/carbon fiber composite[J]. Journal of Materials Engineering, 2008, (Suppl 1): 190- 195.
66 NIGHTINGALE C , DAY R J . Flexural and interlaminar shear strength properties of carbon fibre-epoxy composites cured thermally and with microwave radiation[J]. Composites Part A:Applied Science and Manufacturing, 2002, 33 (7): 1021- 1030.
doi: 10.1016/S1359-835X(02)00031-3
67 LI N , LI Y , HANG X , et al. Analysis and optimization of temperature distribution in carbon fiber reinforced composite materials during microwave curing process[J]. Journal of Materials Processing Technology, 2014, 214 (3): 544- 550.
doi: 10.1016/j.jmatprotec.2013.10.012
68 AGRAWAL R K , DRZAL L T . Effect of microwave processing on fiber-matrix adhesion in composites[J]. Journal of Adhesion, 1989, 29 (1-4): 63- 79.
doi: 10.1080/00218468908026478
69 金钦汉, 戴树珊, 黄卡玛. 微波化学[M]. 北京: 科学出版社, 1999.
70 OUTIFA L , JULLIEN H , DELMOTTE M . Microwave curing of large size epoxy-glass composite samples:how to make it homogeneous[J]. Polymeric Materials Science and Engineering, 1992, 66, 424- 425.
71 WEI J , HAWLEY M C , JOW J , et al. Microwave processing of crossply continuous graphite fiber/epoxy composites[J]. SAMPE Journal, 1991, 27 (1): 33- 39.
72 LYE S W , BOEY F Y C . PC-based monitoring and control system for microwave curing of polymer composites[J]. Materials and Manufacturing Processes, 1994, 9 (5): 851- 868.
doi: 10.1080/10426919408934957
73 BOEY F Y C , GOSLING I , LYE S W . High-pressure microwave curing process for an epoxy-matrix/glass-fibre composite[J]. Journal of Materials Processing Technology, 1992, 29 (1-3): 311- 319.
doi: 10.1016/0924-0136(92)90445-X
74 BOEY F Y C . Humidity and autoclave pressure effect on the interfacial shear strength of a microwave cured epoxy-glass fibre composite[J]. Polymer Testing, 1995, 14 (5): 471- 477.
doi: 10.1016/0142-9418(95)00004-C
75 SEE B V.Rocket motor case microwave cure study[A].Proceedings to the AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference[C].Monterey, CA, USA:AIAA Paper, 1985.
76 FEHER L E , THUMM M K . Microwave innovation for industrial composite fabrication-the HEPHAISTOS technology[J]. IEEE Transactions on Plasma Science, 2004, 32 (1): 73- 79.
doi: 10.1109/TPS.2004.823983
77 MEYER M, BINDER B, GRAEBER M.Microwave autoclave[P].USA Patent:20070108194, 2007-05-17.
[1] 熊京鹏, 刘勇. 镁基复合材料界面调控研究进展[J]. 材料工程, 2023, 51(1): 1-15.
[2] 常海, 赵聪铭, 王翠菊. 挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能[J]. 材料工程, 2023, 51(1): 16-25.
[3] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[4] 吴立清, 冯柳, 毛晓璇, 穆洪亮, 刘志超, 牛金叶, 高蔷. 量子点/碳复合材料在碱金属离子电池的应用进展[J]. 材料工程, 2023, 51(1): 36-51.
[5] 陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63.
[6] 王恩茂, 米振莉, 卫志超, 侯晓英, 钟勇. Q&P980镀锌高强钢电阻点焊工艺及液态金属脆化裂纹分布[J]. 材料工程, 2023, 51(1): 85-94.
[7] 程昊, 周炼刚, 刘健, 王宇宁, 仝凌云, 都东. 热输入对Inconel 617镍基高温合金激光焊接接头显微组织与力学性能的影响[J]. 材料工程, 2023, 51(1): 113-121.
[8] 王宪, 贺雍律, 唐俊, 刘钧, 黄贤俊, 翟多才, 张鉴炜. Al颗粒夹层CFRP复合材料力学及电磁屏蔽性能[J]. 材料工程, 2023, 51(1): 140-147.
[9] 曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
[10] 鞠录岩, 张建兵, 马玉钦, 张钊源, 魏文澜. ZrW2O8-Cf/E51低/负热膨胀复合材料制备及超声时间对其热膨胀和力学性能的影响[J]. 材料工程, 2023, 51(1): 171-178.
[11] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[12] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[13] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[14] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[15] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn