Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (2): 9-15    DOI: 10.11868/j.issn.1001-4381.2017.000752
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高温还原GO制备LiFePO4/石墨烯复合正极材料及表征
邓凌峰(), 覃昱焜, 彭辉艳, 连晓辉, 吴义强
中南林业科技大学 材料科学与工程学院, 长沙 410004
Preparation and Characterization of LiFePO4/Graphene Composite Cathode Materials by High Temperature Reduction GO
Ling-feng DENG(), Yu-kun QIN, Hui-yan PENG, Xiao-hui LIAN, Yi-qiang WU
School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
全文: PDF(3820 KB)   HTML ( 24 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过对氧化石墨烯(GO)进行微观调控处理得到少层GO。采用喷雾干燥再高温改性的方法制备LiFePO4/石墨烯锂离子电池复合正极材料;GO还原后即可得到石墨烯,其优良的导电性可以提高LiFePO4的电子传输能力。通过X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)和电化学测试技术等方法对复合材料的结构、形貌及电化学性能进行表征。石墨烯的复合使材料颗粒间构建空间三维导电网络,提高了电解质/电极材料界面的电荷转移速率,改善了LiFePO4的电化学性能。电化学测试结果表明,在0.1C时LiFePO4的放电比容量为155mAh/g,LiFePO4/石墨烯复合材料的放电比容量为164mAh/g;1C和2C倍率时,LiFePO4/石墨烯复合材料的放电比容量分别为140,119mAh/g。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓凌峰
覃昱焜
彭辉艳
连晓辉
吴义强
关键词 氧化石墨烯石墨烯喷雾干燥导电网络电化学性能    
Abstract

Micro layer of GO was obtained by micro adjustment and control. LiFePO4/graphene composite cathode materials were synthesized using a spray drying followed by high temperature reduction modification method, to improve conductivity of LiFePO4 with excellent conductivity of graphene. The structure, morphology and electrochemical performance of the composite materials were characterized by XRD, FTIR, SEM, TEM and electrochemical measurement technologies. The three-dimensional conductive network was constructed by graphene composite in material particles, which can improve the charge transfer rate of the interface of electrolyte/electrode materials and the electrochemical performance of LiFePO4. The results show that the discharge specific capacity of LiFePO4 without graphene is only 155mAh/g, while the discharge specific capacity of LiFePO4/graphene is 164mAh/g at 0.1C.The discharge specific capacity of LiFePO4/graphene is 140, 119mAh/g at 1, 2C, respectively.

Key wordsgraphene oxide(GO)    graphene    spray drying    conductive network    electrochemical performance
收稿日期: 2017-06-13      出版日期: 2018-02-01
中图分类号:  TM912  
基金资助:国家自然科学基金重点资助项目(31530009)
通讯作者: 邓凌峰     E-mail: denglingfeng168@126.com
作者简介: 邓凌峰(1970-), 男, 副教授, 博士, 主要从事能源材料的研究, 联系地址:湖南省长沙市天心区韶山南路498号中南林业科技大学材料学院(410004), E-mail: denglingfeng168@126.com
引用本文:   
邓凌峰, 覃昱焜, 彭辉艳, 连晓辉, 吴义强. 高温还原GO制备LiFePO4/石墨烯复合正极材料及表征[J]. 材料工程, 2018, 46(2): 9-15.
Ling-feng DENG, Yu-kun QIN, Hui-yan PENG, Xiao-hui LIAN, Yi-qiang WU. Preparation and Characterization of LiFePO4/Graphene Composite Cathode Materials by High Temperature Reduction GO. Journal of Materials Engineering, 2018, 46(2): 9-15.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000752      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/9
Fig.1  LiFePO4,LiFePO4/GO和LiFePO4/石墨烯复合材料的XRD谱图
Fig.2  LiFePO4和LiFePO4/石墨烯复合材料的FTIR谱图
Fig.3  LiFePO4(a), LiFePO4/石墨烯复合材料(b)的SEM图和GO(c)的TEM图
Fig.4  LiFePO4/石墨烯复合材料的电子像及主要元素的EDS面扫描结果
(a)电子像;(b)EDS谱图;(c)C元素分布图; (d)Fe元素分布图; (e)P元素分布图; (f)O元素分布图
Fig.5  LiFePO4/石墨烯复合材料的TEM(a),HRTEM(b)及其FFT图(c)
Fig.6  LiFePO4和LiFePO4/石墨烯复合材料首次充放电曲线
Fig.7  LiFePO4和LiFePO4/石墨烯复合材料的循环和倍率性能
Fig.8  石墨烯和LiFePO4的复合示意图
Fig.9  LiFePO4和LiFePO4/石墨烯复合材料的循环伏安曲线
Fig.10  LiFePO4和LiFePO4/石墨烯复合材料的交流阻抗图谱及其等效电路图
1 WANG B , LIU A , ABDULLA W A , et al. Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage[J]. Nanoscale, 2015, 7 (19): 8819- 8828.
doi: 10.1039/C5NR01831E
2 OH J , LEE J , HWANG T , et al. Dual layer coating strategy utilizing N-doped carbon and reduced graphene oxide for high-performance LiFePO4 cathode material[J]. Electrochimica Acta, 2017, 231, 85- 93.
doi: 10.1016/j.electacta.2017.01.185
3 MILLER D L , KUBISTA K D , RUTTER G M , et al. Observing the quantization of zero mass carriers in graphene[J]. Science, 2009, 324 (5929): 924- 927.
doi: 10.1126/science.1171810
4 杨文彬, 张丽, 刘菁伟, 等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015, 43 (3): 91- 97.
doi: 10.11868/j.issn.1001-4381.2015.03.016
4 YANG W B , ZHANG L , LIU J W , et al. Progress in research on preparation and application of graphene composites[J]. Journal of Materials Engineering, 2015, 43 (3): 91- 97.
doi: 10.11868/j.issn.1001-4381.2015.03.016
5 杨程, 陈宇滨, 田俊鹏, 等. 功能化石墨烯的制备及应用研究进展[J]. 航空材料学报, 2016, 36 (3): 40- 56.
5 YANG C , CHEN Y B , TIAN J P , et al. Development in preparation and application of graphene functionalization[J]. Journal of Aeronautical Materials, 2016, 36 (3): 40- 56.
6 KUCINSKIS G , BAJARS G , KLEPERIS J . Graphene in lithium ion battery cathode materials:a review[J]. Journal of Power Sources, 2013, 240 (31): 66- 79.
7 云强, 周园, 李翔, 等. 石墨烯改性LiFePO4正极材料的研究进展[J]. 电源技术, 2015, 39 (7): 1525- 1529.
7 YUN Q , ZHOU Y , LI X , et al. Research progress on modification of LiFePO4 by graphene[J]. Chinese Journal of Power Sources, 2015, 39 (7): 1525- 1529.
8 WANG Z , GUO H , YAN P . A rapid microwave heating route to synthesize graphene modified LiFePO4/C nanocomposite for rechargeable lithium-ion batteries[J]. Ceramics International, 2014, 40 (10): 15801- 15806.
doi: 10.1016/j.ceramint.2014.07.106
9 LONG Y , SHU Y , MA X , et al. In-situ synthesizing superior high-rate LiFePO4/C nanorods embedded in graphene matrix[J]. Electrochimica Acta, 2014, 117 (4): 105- 112.
10 TIAN Z , ZHOU Z , LIU S , et al. Enhanced properties of olivine LiFePO4/graphene co-doped with Nb5+ and Ti4+ by a sol-gel method[J]. Solid State Ionics, 2015, 278, 186- 191.
doi: 10.1016/j.ssi.2015.06.017
11 DU Y , TANG Y , HUANG F , et al. Preparation of three-dimensional free-standing nano-LiFePO4/graphene composite for high performance lithium ion battery[J]. Rsc Advances, 2016, 6 (57): 52279- 52283.
doi: 10.1039/C6RA08937B
12 NGUYEN V H , GU H B . LiFePO4 batteries with enhanced lithium-ion-diffusion ability due to graphene addition[J]. Journal of Applied Electrochemistry, 2014, 44 (10): 1153- 1163.
doi: 10.1007/s10800-014-0717-8
13 ZHU X , HU J , WU W , et al. LiFePO4/reduced graphene oxide hybrid cathode for lithium ion battery with outstanding rate performance[J]. Journal of Materials Chemistry A, 2014, 2 (21): 7812- 7818.
doi: 10.1039/C4TA00580E
14 江虹, 蔡光兰, 郭瑞松, 等. 石墨烯改性LiFePO4/C正极材料的低温电化学性能[J]. 硅酸盐学报, 2016, 44 (7): 925- 930.
14 JIANG H , CAI G L , GUO R S , et al. Low temperature electrochemical performances of graphene modified LiFePO4/C cathode materials[J]. Journal of the Chinese Ceramic Society, 2016, 44 (7): 925- 930.
15 邓凌峰, 余开明, 严忠, 等. Co2+掺杂石墨烯/LiFePO4锂离子电池复合正极材料的制备与表征[J]. 复合材料学报, 2015, 32 (5): 1390- 1398.
15 DENG L F , YU K M , YAN Z , et al. Preparation and characterization of Co2+ doped graphene/LiFePO4 composite cathode materials for lithium battery[J]. Acta Materiae Compositae Sinica, 2015, 32 (5): 1390- 1398.
16 WU Z S , REN W , WEN L , et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010, 4 (6): 3187- 3194.
doi: 10.1021/nn100740x
17 曹亮, 王安安, 艾立华, 等. 石墨烯在锂离子电池材料性能优化中的应用[J]. 中国有色金属学报, 2016, 26 (4): 807- 820.
17 CAO L , WANG A A , AI L H , et al. Application of graphene in performance optimization of lithium ion battery materials[J]. The Chinese Journal of Nonferrous Metals, 2016, 26 (4): 807- 820.
18 RACCICHINI R , VARZI A , WEI D , et al. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes[J]. Advanced Materials, 2017, 29 (11): 1603421.
doi: 10.1002/adma.201603421
19 WU Z S , ZHOU G , YIN L C , et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy, 2012, 1 (1): 107- 131.
doi: 10.1016/j.nanoen.2011.11.001
[1] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[2] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[3] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[4] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[5] 马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝. Ni-BTC/RGO复合材料的制备及其电化学性能[J]. 材料工程, 2022, 50(6): 124-130.
[6] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[7] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[8] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[9] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[10] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[11] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[12] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[13] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[14] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[15] 李金磊, 邓凌峰, 张淑娴, 谭洁慧, 覃榕荣, 王壮. 化学镀制备纳米银-石墨烯复合材料及其电化学性能[J]. 材料工程, 2021, 49(8): 127-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn