Graphene is widely used in the preparation of polymer matrix composites because of its excellent properties. 3D printing, as an emerging technology, is increasingly applied to the shaping and processing of graphene/polymer composites. In this paper, three kinds of main preparation methods of graphene/polymer composites which are solution mixing, melt blending, and in-situ polymerization were introduced. 3D printing methods and the advantages and disadvantages of inkjet printing, fused deposition modeling (FDM), stereolithography (SLA) and selective laser sintering (SLS) as well as their characteristics were summarized. Besides, the applications of 3D-printed graphene/polymer composites in electronics, energy, biomedical and aerospace were reviewed. Finally, it was pointed out that the further research in this area would be focused on the fabrication of graphene/polymer composites which have good printability, homogeneous dispersed graphene, and excellent functional characteristics.
CHAE H K , SIBERIO-PÉREZ D Y , KIM J , et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427 (6974): 523- 527.
doi: 10.1038/nature02311
2
GEIM A K , NOVOSELOV K S . The rise of graphene[J]. Nature Materials, 2007, 6 (3): 183- 191.
doi: 10.1038/nmat1849
3
NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666- 669.
doi: 10.1126/science.1102896
4
BALANDIN A A , GHOSH S , BAO W , et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8 (3): 902- 907.
doi: 10.1021/nl0731872
5
NETO C , ANTONIO H . Another spin on graphene[J]. Science, 2011, 332 (6027): 315- 316.
doi: 10.1126/science.1204496
6
XU D , WANG Z . Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix[J]. Polymer, 2008, 49 (1): 330- 338.
doi: 10.1016/j.polymer.2007.11.041
7
PENG H , SUN X , CAI F , et al. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres[J]. Nature Nanotechnology, 2009, 4 (11): 738- 742.
doi: 10.1038/nnano.2009.264
8
TIBBETTS G G , LAKE M L , STRONG K L , et al. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites[J]. Composites Science & Technology, 2007, 67 (7): 1709- 1718.
9
STANKOVICH S , DIKIN D A , RUOFF R S , et al. Graphene-based composite materials[J]. Nature, 2006, 442, 282- 286.
doi: 10.1038/nature04969
10
YOUSEFI N , LIN X , ZHENG Q , et al. Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites[J]. Carbon, 2013, 59 (7): 406- 417.
11
SI J , LI J , WANG S , et al. Enhanced thermal resistance of phenolic resin composites at low loading of graphene oxide[J]. Composites Part A, 2013, 54 (4): 166- 172.
ZHEN H D , OU Z X , ZHEN Y Y , et al. Preparation and properties of functional graphene/thermoplastic polyurethane composite film[J]. Journal of Materials Engineering, 2016, 44 (11): 114- 119.
doi: 10.11868/j.issn.1001-4381.2016.11.019
13
GOYANES A , WANG J , BUANZ A , et al. 3D printing of medicines:engineering novel oral devices with unique design and drug release characteristics[J]. Molecular Pharmaceutics, 2015, 12 (11): 4077- 4084.
doi: 10.1021/acs.molpharmaceut.5b00510
HUANG D , ZHU Z H , GENG H B , et al. TIG wire and arc additive manufacturing of 5A06 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45 (3): 66- 72.
doi: 10.11868/j.issn.1001-4381.2015.000552
15
GÜNTHER D , HEYMEL B , GÜNTHER J F , et al. Continuous 3D-printing for additive manufacturing[J]. Rapid Prototyping Journal, 2014, 20 (4): 320- 327.
doi: 10.1108/RPJ-08-2012-0068
CHEN S P , YI H P , LUO Z H , et al. The 3D printing polymers and their printing technologies[J]. Materials Review, 2016, 30 (7): 54- 59.
17
PAREDES J I , VILLARRODIL S , MARTÍNEZALONSO A , et al. Graphene oxide dispersions in organic solvents[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2008, 24 (19): 10560- 10564.
18
XU Y , HONG W , BAI H , et al. Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure[J]. Carbon, 2009, 47 (15): 3538- 3543.
doi: 10.1016/j.carbon.2009.08.022
19
YUAN M , ERDMAN J , TANG C , et al. High performance solid polymer electrolyte with graphene oxide nanosheets[J]. RSC Advances, 2014, 4 (103): 59637- 59642.
doi: 10.1039/C4RA07919A
20
YANG C , HAO S J , DAI S L , et al. Nanocomposites of poly(vinylidene fluoride)-controllable hydroxylated/carboxylated graphene with enhanced dielectric performance for large energy density capacitor[J]. Carbon, 2017, 117, 301- 302.
doi: 10.1016/j.carbon.2017.03.004
YANG C , CHEN Y B , TIAN J P , et al. Development in preparation and application of graphene functionalization[J]. Journal of Aeronautical Materials, 2016, 36 (3): 40- 56.
22
JOHNSON D W , DOBSON B P , COLEMAN K S . A manufacturing perspective on graphene dispersions[J]. Current Opinion in Colloid & Interface Science, 2015, 20 (5): 367- 382.
23
REN P G , YAN D X , CHEN T , et al. Improved properties of highly oriented graphene/polymer nanocomposites[J]. Journal of Applied Polymer Science, 2011, 121 (6): 3167- 3174.
doi: 10.1002/app.33856
24
WAN Y J , TANG L C , GONG L X , et al. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties[J]. Carbon, 2014, 69 (2): 467- 480.
25
WEI X , LI D , JIANG W , et al. 3D printable graphene composite[J]. Scientific Reports, 2015, 5, 11181- 11188.
doi: 10.1038/srep11181
26
KUMAR P , YU S , SHAHZAD F , et al. Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides[J]. Carbon, 2016, 101, 120- 128.
doi: 10.1016/j.carbon.2016.01.088
27
ZENG C , LU S , XIAO X , et al. Enhanced thermal and mechanical properties of epoxy composites by mixing noncovalently functionalized graphene sheets[J]. Polymer Bulletin, 2015, 72 (3): 453- 472.
doi: 10.1007/s00289-014-1280-5
28
LI P , CHEN X , ZENG J B , et al. Enhancement of interfacial interaction between poly(vinyl chloride) and zinc oxide modified reduced graphene oxide[J]. RSC Advances, 2016, 6 (7): 5784- 5791.
doi: 10.1039/C5RA20893A
29
CHATTERJEE S , NVESCH F A , CHU B T . Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites[J]. Nanotechnology, 2011, 22 (27): 275714.
doi: 10.1088/0957-4484/22/27/275714
30
YOU F , WANG D , CAO J , et al. In situ thermal reduction of graphene oxide in a styrene-ethylene/butylene-styrene triblock copolymer via melt blending[J]. Polymer International, 2013, 63 (1): 93- 99.
31
KIM H , MIURA Y , MACOSKO C W . Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chemistry of Materials, 2010, 22 (11): 3441- 3450.
doi: 10.1021/cm100477v
32
ZHANG H B , YAN Q , ZHENG W G , et al. Tough graphene-polymer microcellular foams for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2011, 3 (3): 918- 924.
33
KIM H , MACOSKO C W . Processing-property relationships of polycarbonate/graphene composites[J]. Polymer, 2009, 50 (15): 3797- 3809.
doi: 10.1016/j.polymer.2009.05.038
34
ISTRATE O M , PATON K R , KHAN U , et al. Reinforcement in melt-processed polymer-graphene composites at extremely low graphene loading level[J]. Carbon, 2014, 78 (18): 243- 249.
35
WANG H , XIE G , ZHU Z , et al. Enhanced tribological performance of the multi-layer graphene filled poly(vinyl chloride)composites[J]. Composites Part A, 2014, 67, 268- 273.
doi: 10.1016/j.compositesa.2014.09.011
36
HSIAO M C , LIAO S H , LIN Y F , et al. Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite[J]. Nanoscale, 2011, 3 (4): 1516- 1522.
doi: 10.1039/c0nr00981d
37
WANG J Y , YANG S Y , HUANG Y L , et al. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization[J]. Journal of Materials Chemistry, 2011, 21 (35): 13569- 13575.
doi: 10.1039/c1jm11766a
38
POTTS J R , SUN H L , ALAM T M , et al. Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate)composites made by in situ polymerization[J]. Carbon, 2011, 49 (8): 2615- 2623.
doi: 10.1016/j.carbon.2011.02.023
39
CHEN Z , LU H . Constructing sacrificial bonds and hidden lengths for ductile graphene/polyurethane elastomers with improved strength and toughness[J]. Journal of Materials Chemistry, 2012, 22 (25): 12479- 12490.
doi: 10.1039/c2jm30517h
40
LI J , XIE H , LI Y , et al. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors[J]. Journal of Power Sources, 2011, 196 (24): 10775- 10781.
doi: 10.1016/j.jpowsour.2011.08.105
41
GUO Y , BAO C , SONG L , et al. In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior[J]. Industrial & Engineering Chemistry Research, 2011, 50 (13): 7772- 7783.
42
ESWARAIAH V , SANKARANARAYANAN V , RAMAPRABHU S . Functionalized graphene-PVDF foam composites for EMI shielding[J]. Macromolecular Materials & Engineering, 2011, 296 (10): 894- 898.
43
PATOLE A S , PATOLE S P , KANG H , et al. A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization[J]. Journal of Colloid & Interface Science, 2010, 350 (2): 530- 537.
44
ALDOSARI M A , OTHMAN A A , ALSHARAEH E H . Synthesis and characterization of the in situ bulk polymerization of PMMA containing graphene sheets using microwave irradiation[J]. Molecules, 2013, 18 (3): 3152- 3167.
doi: 10.3390/molecules18033152
45
LI J , SOLLAMI D S , ZHANG P , et al. Scalable fabrication and integration of graphene micro-supercapacitors through full inkjet printing[J]. ACS Nano, 2017, 11 (8): 8249- 8256.
doi: 10.1021/acsnano.7b03354
46
DODOO A D , HOWE C T , HU G , et al. Inkjet-printed graphene electrodes for dye-sensitized solar cells[J]. Carbon, 2016, 105, 33- 41.
doi: 10.1016/j.carbon.2016.04.012
47
LIM S , KANG B , KWAK D , et al. Inkjet-printed reduced graphene oxide/poly(vinyl alcohol)composite electrodes for flexible transparent organic field-effect transistors[J]. Journal of Physical Chemistry C, 2012, 116 (13): 7520- 7525.
doi: 10.1021/jp203441e
48
POSPISIL J , SCHMIEDOVA V , ZMESKAL O , et al. Electrical properties of graphene oxide layers prepared by material inkjet printing[J]. Key Engineering Materials, 2016, 674, 109- 114.
doi: 10.4028/www.scientific.net/KEM.674
49
GARCÍA-TUÑÓN E , BARG S , FRANCO J , et al. Printing in three dimensions with graphene[J]. Advanced Materials, 2015, 27 (10): 1688- 1693.
doi: 10.1002/adma.201405046
50
JABARI E , TOYSERKANI E . Micro-scale aerosol-jet printing of graphene interconnects[J]. Carbon, 2015, 91, 321- 329.
doi: 10.1016/j.carbon.2015.04.094
51
CHI K , ZHANG Z , XI J , et al. Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor[J]. ACS Applied Materials & Interfaces, 2014, 6 (18): 16312- 16319.
52
JAKUS A E , SECOR E B , RUTZ A L , et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications[J]. ACS Nano, 2015, 9 (4): 4636- 4648.
doi: 10.1021/acsnano.5b01179
53
WEI X , LI D , WEI J , et al. 3D printable graphene composite[J]. Scientific Reports, 2015, 5, 11181- 11188.
doi: 10.1038/srep11181
54
CHEN Q , MANGADLAO J D , WALLAT J , et al. 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites:anisotropic properties[J]. ACS Applied Materials & Interfaces, 2017, 9 (4): 4015- 4023.
55
ZHU D , REN Y , LIAO G , et al. Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling[J]. Journal of Applied Polymer Science, 2017, 134 (39): 45332.
doi: 10.1002/app.v134.39
56
ZHANG D , CHI B , LI B , et al. Fabrication of highly conductive graphene flexible circuits by 3D printing[J]. Synthetic Metals, 2016, 217, 79- 86.
doi: 10.1016/j.synthmet.2016.03.014
57
SAYYAR S , CORNOCK R , MURRAY E , et al. Extrusion printed graphene/polycaprolactone composites for tissue engineering[J]. Materials Science Forum, 2014, 773, 496- 502.
58
ZHOU X , NOWICKI M , CUI H , et al. 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells[J]. Carbon, 2017, 116, 615- 624.
doi: 10.1016/j.carbon.2017.02.049
59
WANG L , NI X . The effect of the inorganic nanomaterials on the UV-absorption, rheological and mechanical properties of the rapid prototyping epoxy-based composites[J]. Polymer Bulletin, 2016, 1- 17.
60
GALLARDO A , PEREYRA Y , MARTÍNEZCAMPOS E , et al. Facile one-pot exfoliation and integration of 2D layered materials by dispersion in a photocurable polymer precursor[J]. Nanoscale, 2017, 9 (30): 10590- 10595.
doi: 10.1039/C7NR03204H
61
ZHU W, HARRIS B T, ZHANG L G, et al. Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting[C]//Conf Proc IEEE Eng Med Biol Soc. Piscataway: Engineering in Medicine & Biology Society, 2016: 4185.
62
SHUAI C , FENG P , GAO C , et al. Graphene oxide reinforced poly(vinyl alcohol):nanocomposite scaffolds for tissue engineering applications[J]. RSC Advances, 2015, 5 (32): 25416- 25423.
doi: 10.1039/C4RA16702C
63
GAIKWAD S , TATE J , THEODOROPOULOU N , et al. Electrical and mechanical properties of PA11 blended with nanographene platelets using industrial twin-screw extruder for selective laser sintering[J]. Journal of Composite Materials, 2013, 47 (23): 2973- 2986.
doi: 10.1177/0021998312460560
64
DAS S . Selective laser sintering of polymers and polymer-ceramic composites[J]. Virtual Prototyping & Bio Manufacturing in Medical Applications, 2008, 229- 260.
65
SIRRINGHAUS H , KAWASE T , FRIEND R H , et al. High-resolution inkjet printing of all-polymer transistor circuits[J]. Science, 2000, 290 (5499): 2123- 2126.
doi: 10.1126/science.290.5499.2123
WANG N , YAN S J , PENG S K , et al. Research progress on 3D printed graphene materials synthesis technology and its application in energy storage field[J]. Journal of Materials Engineering, 2017, 45 (12): 112- 115.
doi: 10.11868/j.issn.1001-4381.2016.001102
67
SINGH M , HAVERINEN H M , DHAGAT P , et al. Inkjet printing-process and its applications[J]. Advanced Materials, 2010, 22 (6): 673- 685.
doi: 10.1002/adma.v22:6
68
WENDEL B , RIETZEL D , KVHNLEIN F , et al. Additive processing of polymers[J]. Macromolecular Materials & Engineering, 2008, 293 (10): 799- 809.
69
PADDUBSKAYA A , VALYNETS N , KUZHIR P , et al. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic)acid structures[J]. Journal of Applied Physics, 2016, 119 (13): 924- 1186.
70
SINGH R , SANDHU G S , PENNA R , et al. Investigations for thermal and electrical conductivity of ABS-graphene blended prototypes[J]. Materials, 2017, 10 (7): 881- 894.
71
MELCHELS F P , FEIJEN J , GRIJPMA D W . A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials, 2010, 31 (24): 6121- 6130.
doi: 10.1016/j.biomaterials.2010.04.050
WANG Y Q , SHEN J X , WU H Q . Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 2016, 36 (4): 89- 98.
73
LEE W C , LIM C H , SHI H , et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide[J]. ACS Nano, 2011, 5 (9): 7334- 7341.
doi: 10.1021/nn202190c
74
MANAPAT J Z , MANGADLAO J D , TIU B D , et al. High-strength stereolithographic 3D printed nanocomposites:graphene oxide metastability[J]. ACS Applied Materials & Interfaces, 2017, 9 (11): 100085- 100093.
75
LIN D , JIN S , ZHANG F , et al. 3D stereolithography printing of graphene oxide reinforced complex architectures[J]. Nanotechnology, 2015, 26 (43): 434003.
doi: 10.1088/0957-4484/26/43/434003
76
KORHONEN H , SINH L H , LUONG N D , et al. Fabrication of graphene-based 3D structures by stereolithography[J]. Physica Status Solidi, 2016, 213 (4): 982- 985.
doi: 10.1002/pssa.v213.4
77
GU D D , MEINERS W , WISSENBACH K , et al. Laser additive manufacturing of metallic components:materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57 (3): 133- 164.
doi: 10.1179/1743280411Y.0000000014
78
ANNA M , MARIA T , KONSTANTY S , et al. PA-G composite powder for innovative additive techniques[J]. Composites Theory and Practice, 2015, 15 (3): 152- 157.
SHI X D , WANG W , JIN H J , et al. Transport properties of graphene field effect transistors[J]. Chinese Science Bulletin, 2017, (14): 1520- 1526.
80
WANG Y , HUANG B C , ZHANG M , et al. Optimizing the fabrication process for high performance graphene field effect transistors[J]. Microelectronics Reliability, 2012, 52 (8): 1602- 1605.
doi: 10.1016/j.microrel.2011.09.036
XIANG L , WANG Z , LIU Z , et al. Inkjet-printed flexible biosensor based on graphene field effect transistor[J]. IEEE Sensors Journal, 2016, 16 (23): 8359- 8364.
83
SUN T , WANG Z L , SHI Z J , et al. Multilayered graphene used as anode of organic light emitting devices[J]. Applied Physics Letters, 2010, 96 (13): 55- 59.
84
WU J , AGRAWAL M , BECERRIL H A , et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes[J]. ACS Nano, 2010, 4 (1): 43- 48.
doi: 10.1021/nn900728d
85
RUDORFER A, TSCHERNER M, PALFINGER C, et al. A study on Aerosol Jet printing technology in LED module manufacturing[C]//Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems. Bellingham: SPIE, 2016: 99540E.
86
HUANG L , HUANG Y , LIANG J , et al. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors[J]. Nano Research, 2011, 4 (7): 675- 684.
doi: 10.1007/s12274-011-0123-z
87
SECOR E B , PRABHUMIRASHI P L , PUNTAMBEKAR K , et al. Inkjet printing of high conductivity, flexible graphene patterns[J]. Journal of Physical Chemistry Letters, 2013, 4 (8): 1347- 1351.
doi: 10.1021/jz400644c
88
DU X , GUO P , SONG H , et al. Graphene nanosheets as electrode material for electric double-layer capacitors[J]. Electrochimica Acta, 2010, 55 (16): 4812- 4819.
doi: 10.1016/j.electacta.2010.03.047
89
ZHU Y , MURALI S , STOLLER M D , et al. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors[J]. Carbon, 2010, 48 (7): 2118- 2122.
doi: 10.1016/j.carbon.2010.02.001
90
YAN J , WEI T , SHAO B , et al. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance[J]. Carbon, 2010, 48 (2): 487- 493.
doi: 10.1016/j.carbon.2009.09.066
91
AN J , LIU J , ZHOU Y , et al. Polyaniline-grafted graphene hybrid with amide groups and its use in supercapacitors[J]. Journal of Physical Chemistry C, 2012, 116 (37): 19699- 19708.
doi: 10.1021/jp306274n
92
YU D , DAI L . Self-assembled graphene/carbon nanotube hybrid films for supercapacitors[J]. Journal of Physical Chemistry Letters, 2015, 1 (2): 467- 470.
93
LI J , SOLLAMI D S , ZHANG P , et al. Scalable fabrication and integration of graphene micro-supercapacitors through full inkjet printing[J]. ACS Nano, 2017, 11 (8): 8249- 8256.
doi: 10.1021/acsnano.7b03354
94
LI T , GAO L . A high-capacity graphene nanosheet material with capacitive characteristics for the anode of lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2012, 16 (2): 557- 561.
doi: 10.1007/s10008-011-1384-x
95
BHASKAR A , DEEPA M , RAO T N , et al. Enhanced nanoscale conduction capability of a MoO2/graphene composite for high performance anodes in lithium ion batteries[J]. Journal of Power Sources, 2012, 216 (11): 169- 178.
96
FU K , WANG Y , YAN C , et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Advanced Materials, 2016, 28 (13): 2587- 2594.
doi: 10.1002/adma.201505391
CHEN G X , TAN Z Q , ZHAO Y , et al. Applications of graphene for energy storage and conversion[J]. Scientia Sinica Chimica, 2013, 43 (6): 704- 715.
98
DODOO A D , HOWE R C T , HU G , et al. Inkjet-printed graphene electrodes for dye-sensitized solar cells[J]. Carbon, 2016, 105, 33- 41.
doi: 10.1016/j.carbon.2016.04.012
99
QU L , LIU Y , BAEK J B , et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010, 4 (3): 1321- 1326.
doi: 10.1021/nn901850u
100
JAFRI R I , RAJALAKSHMI N , RAMAPRABHU S . Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell[J]. Journal of Materials Chemistry, 2010, 20 (34): 7114- 7117.
doi: 10.1039/c0jm00467g
101
HU W , PENG C , LUO W , et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4 (7): 4317- 4323.
doi: 10.1021/nn101097v
102
LIU Z , ROBINSON J T , SUN X , et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. Journal of the American Chemical Society, 2008, 130 (33): 10876- 10887.
doi: 10.1021/ja803688x
103
ZHANG L , XIA J , ZHAO Q , et al. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs[J]. Small, 2010, 6 (4): 537- 544.
doi: 10.1002/smll.v6:4
104
YANG K , ZHANG S , ZHANG G , et al. Graphene in mice:ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano Letters, 2010, 10 (9): 3318- 3323.
doi: 10.1021/nl100996u
105
ZHANG L , LIU W , YUE C , et al. A tough graphene nanosheet/hydroxyapatite composite with improved in vitro, biocompatibility[J]. Carbon, 2013, 61 (11): 105- 115.
106
RUIZ O N , FERNANDO K A , WANG B , et al. Graphene oxide:a nonspecific enhancer of cellular growth[J]. ACS Nano, 2011, 5 (10): 8100- 8107.
doi: 10.1021/nn202699t
107
ZHU W, HARRIS B T, ZHANG L G, et al. Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting[C]//Conf Proc IEEE Eng Med Biol Soc. Orlando: Engineering in Medicine & Biology Society, 2016: 4185.
ZHU L . Characteristics of new type carbon nano material and its application in the field of aeronautics and astronautics[J]. Metallurgical Standardization & Quality, 2015, (6): 41- 44.
109
SIOCHI E J . Graphene in the sky and beyond[J]. Nature Nanotechnology, 2014, 9 (10): 745- 747.
doi: 10.1038/nnano.2014.231
XING Y , HAO S J , CHEN Y B , et al. Discussion on the performance and frontier application of graphene[J]. Advanced Materials Industry, 2016, (10): 24- 30.
doi: 10.3969/j.issn.1008-892X.2016.10.008
XIE W G , ZHAO D L , JING L , et al. Preparation and mechanical properties of graphene reinforced epoxy resin matrix composites[J]. Polymer Materials Science & Engineering, 2012, 28 (9): 129- 132.
112
WANG X , JIN J , SONG M . An investigation of the mechanism of graphene toughening epoxy[J]. Carbon, 2013, 65 (6): 324- 333.
CHEN Z M , LIN Q L , CAI Q H , et al. Preparation and properties of graphene oxide/bismaleimide resin nanocomposites[J]. Polymer Materials Science & Engineering, 2012, 28 (11): 169- 172.
114
LIU M , DUAN Y , WANG Y , et al. Diazonium functionalization of graphene nanosheets and impact response of aniline modified graphene/bismaleimide nanocomposites[J]. Materials & Design, 2014, 53 (1): 466- 474.
115
ZHOU J , YAO Z , CHEN Y , et al. Mechanical and thermal properties of graphene oxide/phenolic resin composite[J]. Polymer Composites, 2013, 34 (8): 1245- 1249.
doi: 10.1002/pc.v34.8
WANG L N , CHEN C M , YANG Y G , et al. The preparation and properties of graphene oxide sheets/phenolic resin composites[J]. Materials Review, 2010, 24 (18): 54- 56.
117
张永刚. 碳纤维表面上浆剂和氧化石墨烯改性研究[D]. 北京: 中国科学院大学, 2015.
117
ZHANG Y G. Study on carbon fiber surface sizing agent and its functionalization by graphene oxide[D]. Beijing: University of Chinese Academy of Sciences, 2015.
118
HUANG S Y , WU G P , CHEN C M , et al. Electrophoretic deposition and thermal annealing of a graphene oxide thin film on carbon fiber surfaces[J]. Carbon, 2013, 52 (2): 613- 616.
119
ROKNI H , LU W . Effect of graphene layers on static pull-in behavior of bilayer graphene/substrate electrostatic microactuators[J]. Journal of Microelectromechanical Systems, 2013, 22 (3): 553- 559.
doi: 10.1109/JMEMS.2012.2230315
120
VERMA M , VERMA P , DHAWAN S K , et al. Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications[J]. RSC Advances, 2015, 5 (118): 97349- 97358.
doi: 10.1039/C5RA17276D
121
GAGNÉ M , THERRIAULT D . Lightning strike protection of composites[J]. Progress in Aerospace Sciences, 2014, 64, 1- 16.
doi: 10.1016/j.paerosci.2013.07.002
122
AMIRSARDARI Z , AGHDAM R M , SALAVATI N M , et al. Enhanced thermal resistance of GO/C/phenolic nanocomposite by introducing ZrB2 nanoparticles[J]. Composites Part B Engineering, 2015, 76 (21): 174- 179.
123
LI Q , CHEN W , YAN W , et al. In situ solution polymerization for preparation of MDI-modified graphene/hyperbranched poly(ether imide) nanocomposites and their properties[J]. RSC Advances, 2015, 6 (1): 716- 729.
124
PARK J M , KWON D J , WANG Z J , et al. Interfacial, fire retardancy, and thermal stability evaluation of graphite oxide (GO)-phenolic composites with different GO particle sizes[J]. Composites Part B Engineering, 2013, 53 (5): 290- 296.
WANG C Y , WANG X X , CAO M S . Progress in research on light weight graphene-based EMI shielding material[J]. Journal of Material Engineering, 2016, 44 (10): 109- 118.
doi: 10.11868/j.issn.1001-4381.2016.10.016
126
LI Y, ZHAI W. Graphene nanocomposites for electromagnetic induction shielding[M]//Graphene-based polymer nanocomposites in electronics. Cham Switzerland: Springer International Publishing, 2015: 345-372.
127
SINGH A P , GARG P , ALAM F , et al. Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3, and carbon fibers for excellent electromagnetic interference shielding in the X-band[J]. Carbon, 2012, 50 (10): 3868- 3875.
doi: 10.1016/j.carbon.2012.04.030