Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (7): 19-28    DOI: 10.11868/j.issn.1001-4381.2018.000084
  3D打印技术专栏 本期目录 | 过刊浏览 | 高级检索 |
陶瓷3D打印技术及材料研究进展
纪宏超1,2, 张雪静1, 裴未迟1,3,*(), 李耀刚1, 郑镭1,4, 叶晓濛1, 陆永浩2
1 华北理工大学 机械工程学院, 河北 唐山 063210
2 北京科技大学 国家材料服役安全科学中心, 北京 100083
3 北京科技大学 机械工程学院, 北京 100083
4 河北农业大学 机电工程学院, 河北 保定 071001
Research Progress in Ceramic 3D Printing Technology and Material Development
Hong-chao JI1,2, Xue-jing ZHANG1, Wei-chi PEI1,3,*(), Yao-gang LI1, Lei ZHENG1,4, Xiao-meng YE1, Yong-hao LU2
1 College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
2 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
3 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
4 College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071001, Hebei, China
全文: PDF(2025 KB)   HTML ( 29 )  
输出: BibTeX | EndNote (RIS)      
摘要 

综述了陶瓷3D打印技术和材料的特性及其研究进展与应用现状,重点讨论了喷墨打印技术、熔化沉积成型技术、光固化成型技术、分层实体制造技术、激光选区熔化技术/激光选区烧结技术、三维打印成型技术、浆料直写成型技术的特性和研究进展,分析了磷酸三钙陶瓷、氧化铝陶瓷、陶瓷先驱体、SiC陶瓷、Si3N4陶瓷、碳硅化钛陶瓷的特性和应用现状,最后指出了陶瓷3D打印技术的发展方向是与传统陶瓷工艺相结合,实现陶瓷制品的快速生产及生物陶瓷制品、高性能陶瓷功能零件的制造。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
纪宏超
张雪静
裴未迟
李耀刚
郑镭
叶晓濛
陆永浩
关键词 3D打印增材制造陶瓷材料陶瓷先驱体    
Abstract

The research progress and application status of ceramic 3D printing technology, and its materials characteristics were reviewed. The characteristics and research progress of inkjet printing technology, melt deposition molding technology, photocuring molding technology, layered entity manufacturing technology, laser selection melting technology/laser selective sintering technology, three-dimensional printing technology, and slurry write-through molding technology were discussed. The characteristics and application status of tricalcium phosphate ceramics, alumina ceramics, ceramic precursor, SiC ceramics, Si3N4 ceramics, and titanium silicon carbide ceramics were analyzed. It was pointed out that the development direction of ceramic 3D printing technology is combined with traditional ceramic technology to realize the rapid production of ceramic products and the manufacture of bio-ceramic products and high-performance ceramic functional parts.

Key words3D printing    additive manufacturing    ceramic material    ceramic precursor
收稿日期: 2018-01-22      出版日期: 2018-07-20
中图分类号:  TQ174  
基金资助:国家自然科学基金项目(51505124);河北省自然科学基金项目(E2017209059)
通讯作者: 裴未迟     E-mail: pwc@ncst.edu.cn
作者简介: 裴未迟(1975-), 男, 博士, 副教授, 研究方向:增材制造, 联系地址:河北省唐山市曹妃甸区华北理工大学机械工程学院(063210), E-mail:pwc@ncst.edu.cn
引用本文:   
纪宏超, 张雪静, 裴未迟, 李耀刚, 郑镭, 叶晓濛, 陆永浩. 陶瓷3D打印技术及材料研究进展[J]. 材料工程, 2018, 46(7): 19-28.
Hong-chao JI, Xue-jing ZHANG, Wei-chi PEI, Yao-gang LI, Lei ZHENG, Xiao-meng YE, Yong-hao LU. Research Progress in Ceramic 3D Printing Technology and Material Development. Journal of Materials Engineering, 2018, 46(7): 19-28.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000084      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/19
Fig.1  FDM工艺原理图[8]
Fig.2  SLA光固化工艺示意图[15]
Fig.3  SLS成型过程示意图[26]
Fig.4  黏结成型3DP工艺示意图[31]
Fig.5  浆料直写成型设备示意图[32]
Material Layer thickness/μm Binder Reference
TCP 20 Aqueous based [47]
α/β-TCP modified with 5% (mass fraction) hydroxypropymethyl cellulose 100 Water [48]
TCP 100 [49]
α/β-TCP (final product: dicalcium phosphate dihydrate (DCPD)) 20%phosphoric acid [50]
SiO2-ZnO-doped TCP 20 Aqueous based [51]
TCP (final product: DCPD) 100 20%phosphoric acid [52]
TCP (final product: brushite) 100 0.5mol/L Ca(H2PO4)2 + 10%H3PO4 [53]
Table 1  3D打印应用于骨组织工程[46]
1 HOU X , HU Y , GRINTHAL A , et al. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behavior[J]. Nature, 2015, 519 (7541): 70- 73.
doi: 10.1038/nature14253
2 MATTEO P , MASSILIMIANO V , CLAUDIO B . Effect of porosity of cordierite preforms on microstructure and mechanical strength of co-continuous ceramic composites[J]. Journal of the European Ceramic Society, 2007, 27 (1): 131- 141.
doi: 10.1016/j.jeurceramsoc.2006.05.080
3 GRIFFITH M L , HALLROAN J W . Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 2010, 79 (10): 2601- 2608.
4 WINDSHIMER H , TRAVITZKY N , HOFENAUER A , et al. Laminated object manufacturing of preceramic-paper-derived Si-SiC composites[J]. Advanced Materials, 2007, 19 (24): 4515- 4519.
doi: 10.1002/(ISSN)1521-4095
5 BLAZDELL P . Solid free-forming of ceramics using a continuous jet printer[J]. Journal of Materials Processing Technology, 2003, 137 (1/3): 49- 54.
6 OZKOL E , EBERT J , UIBEL K , et al. Development of high solid content aqueous 3Y-TZP suspensions for direct inkjet printing using a thermal inkjet printer[J]. Journal of the European Ceramic Society, 2009, 29 (3): 403- 409.
doi: 10.1016/j.jeurceramsoc.2008.06.020
7 CHIA H N , WU B M . Recent advances in 3D printing of biomaterials[J]. Journal of Biological Engineering, 2015, 9 (1): 4.
doi: 10.1186/s13036-015-0001-4
8 VAN N R . The future of dental devices is digital[J]. Dental Materials, 2012, 28 (1): 3- 12.
doi: 10.1016/j.dental.2011.10.014
9 刘斌, 谢毅. 熔融沉积快速成型系统喷头应用现状分析[J]. 工程塑料应用, 2008, 36 (12): 68- 71.
doi: 10.3969/j.issn.1001-3539.2008.12.019
9 LIU B , XIE Y . Analysis on application status for the spray head of fused deposition modeling system[J]. Engineering Plastics Application, 2008, 36 (12): 68- 71.
doi: 10.3969/j.issn.1001-3539.2008.12.019
10 McNULTY T F , SHANEFIELD D J , DANFORTH S C , et al. Dispersion of lead zirconate titanate for fused deposition of ceramics[J]. Journal of the American Ceramic Society, 2010, 82 (7): 1757- 1760.
11 GOYANES A , CHANG H , SEDOUGH D , et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing[J]. International Journal of Pharmaceutics, 2015, 496 (2): 414- 420.
doi: 10.1016/j.ijpharm.2015.10.039
12 GRIFFITH M L , HALLORAN J W . Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 1996, 79 (10): 2601- 2608.
13 BERTSCH A , JIQUET S , RENAUD P . Microfabrication of ceramic components by microstereolithography[J]. Journal of Micromechanics & Microengineering, 2004, 14 (2): 197- 203.
14 HALLORAN J W, GRIFFITH M, CHU T M. Stereolithography resin for rapid prototyping of ceramics and metals: US 6117612[P]. 2000-09-12.
15 STANSBURY J W , IDACAVAGE M J . 3D printing with polymers:challenges among expanding options and opportunities[J]. Dental Materials, 2016, 32 (1): 54- 64.
doi: 10.1016/j.dental.2015.09.018
16 黄淼俊, 伍海东, 黄容基, 等. 陶瓷增材制造(3D打印)技术研究进展[J]. 现代技术陶瓷, 2017, 38 (4): 248- 266.
16 HUANG M J , WU H D , HUANG R J , et al. A review on ceramic additive manufacturing (3D printing)[J]. Advanced Ceramics, 2017, 38 (4): 248- 266.
17 FARSARI M , HUANG S , BIRCH P , et al. Microfabrication by use of a spatial light modulator in the ultraviolet:experimental results[J]. Optics Letters, 1999, 24 (8): 549- 550.
doi: 10.1364/OL.24.000549
18 LU Y , MAPILI G , SUHALI G , et al. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds[J]. Journal of Biomedical Materials Research Part A, 2006, 77 (2): 396- 405.
19 BERTSCH A , BERNHARD P , VOGT C , et al. Rapid prototyping of small size objects[J]. Rapid Prototyping Journal, 2000, 6 (4): 259- 266.
doi: 10.1108/13552540010373362
20 SUN C , FANG N , WU D M , et al. Projection micro-stereolithography using digital micro-mirror dynamic mask[J]. Sensors & Actuators A:Physical, 2005, 121 (1): 113- 120.
21 CHABOK H, ZHOU C, CHEN Y, et al. Ultrasound transducer array fabrication based on additive manufacturing of piezocomposites[C]//ASME/ISCIE 2012 International Symposium on Flexible Automation. St Louis, USA: American Society of Mechanical Engineers, 2012: 433-444.
22 DENDUKURI D , PREGIBON D C , COLLINS J , et al. Continuous-flow lithography for high-throughput microparticle synthesis[J]. Nature Materials, 2006, 5 (5): 365- 369.
doi: 10.1038/nmat1617
23 SPOATH S , SEITZ H . Influence of grain size and grain-size distribution on workability of granules with 3D printing[J]. International Journal of Advanced Manufacturing Technology, 2014, 70 (1/4): 135- 144.
24 杨万莉, 王秀峰, 江红涛, 等. 基于快速成型技术的陶瓷零件无模制造[J]. 材料导报, 2006, 20 (12): 92- 95.
doi: 10.3321/j.issn:1005-023X.2006.12.024
24 YANG W L , WANG X F , JIANG H T , et al. Freeform fabrication of ceramics parts based on rapid prototyping technology[J]. Materials Review, 2006, 20 (12): 92- 95.
doi: 10.3321/j.issn:1005-023X.2006.12.024
25 贲玥, 张乐, 魏帅, 等. 3D打印陶瓷材料研究进展[J]. 材料导报, 2016, 30 (21): 109- 118.
25 BI Y , ZHANG L , WEI S , et al. Research progress of 3D printed ceramic materials[J]. Materials Review, 2016, 30 (21): 109- 118.
26 GANERIWALA R , ZOHDI T I . A coupled discrete element-finite difference model of selective laser sintering[J]. Granular Matter, 2016, 18 (2): 21- 36.
doi: 10.1007/s10035-016-0626-0
27 WILKES J , HAGEDORN Y , MEINERS W , et al. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting[J]. Rapid Prototyping Journal, 2013, 19 (1): 51- 57.
28 FINA F , GOYANES A , GAISFORD S , et al. Selective laser sintering (SLS) 3D printing of medicines[J]. International Journal of Pharmaceutics, 2017, 529 (1): 258- 293.
29 吴琼, 陈惠, 巫静, 等. 选择性激光烧结用原材料的研究进展[J]. 材料导报, 2015, 29 (26): 78- 83.
29 WU Q , CHEN H , WU J , et al. Research development of the material used for selective laser sintering[J]. Materials Review, 2015, 29 (26): 78- 83.
30 ONUH S O , YUSUF Y Y . Rapid prototyping technology:applications and benefits for rapid product development[J]. Journal of Intelligent Manufacturing, 1999, 10 (3/4): 301- 311.
doi: 10.1023/A:1008956126775
31 UTELA B , STORTI D , ANDERSON R , et al. A review of process development steps for new material systems in three dimensional printing (3DP)[J]. Journal of Manufacturing Processes, 2008, 10 (2): 96- 104.
doi: 10.1016/j.jmapro.2009.03.002
32 CESARANO J , SEGALMAN R , CALVERT P . Robocasting provides moldless fabrication from slurry deposition[J]. Ceramic Industry, 1998, 148 (4): 94- 102.
33 LEWIS J . Direct-write assembly of ceramics from colloidal inks[J]. Current Opinion in Solid State & Materials Science, 2002, 6 (3): 245- 250.
34 LEWIS J A . Colloidal processing of ceramics[J]. Journal of the American Ceramic Society, 2000, 83 (10): 2341- 2359.
35 GUO J J , LEWIS J A . Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions[J]. Journal of the American Ceramic Society, 1999, 82 (9): 2345- 2358.
doi: 10.1111/j.1151-2916.1999.tb02090.x
36 SUN J B , LI B , HUANG X G , et al. Direct-write assembly of ceramic three-dimensional structures based on photosensitive inks[J]. Journal of Inorganic Materials, 2009, 24 (6): 1147- 1150.
doi: 10.3724/SP.J.1077.2009.01147
37 李亚运, 司云晖, 熊信柏, 等. 陶瓷3D打印技术的研究与进展[J]. 硅酸盐学报, 2017, 45 (6): 793- 805.
37 LI Y Y , SI Y H , XIONG X B , et al. Research and progress on three dimensional printing of ceramic materials[J]. Journal of the Chinese Ceramic Society, 2017, 45 (6): 793- 805.
38 夏雪. 浅谈我国3D打印陶瓷材料及产业化发展[J]. 陶瓷, 2017, (5): 9- 12.
38 XIA X . Introduction to 3D printing ceramic materials and industrialiazation development in China[J]. Ceramics, 2017, (5): 9- 12.
39 SHAO H F , HE Y , FU J Z , et al. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation[J]. Journal of the European Ceramic Society, 2016, 36 (6): 1495- 1503.
doi: 10.1016/j.jeurceramsoc.2016.01.010
40 OVERMAN J R , FARREGUASCH E , HELDER M N , et al. Short (15 minutes) bone morphogenetic protein-2 treatment stimulates osteogenic differentiation of human adipose stem cells seeded on calcium phosphate scaffolds in vitro[J]. Tissue Engineering Part A, 2013, 19 (4): 571- 581.
41 BOHNER M . Design of ceramic-based cements and putties for bone graft substitution[J]. European Cells & Materials, 2010, 20 (7): 1- 12.
42 SARIIBRAHIMOGLU K , WOLKE J G C , LEEUWENBURGH S C G , et al. Characterization of α/β-TCP based injectable calcium phosphate cement as a potential bone substitute[J]. Key Engineering Materials, 2013, 529/530 (11): 157- 160.
43 SUGAWARA A , ASAOKA K , DING S J . Calcium phosphate-based cements:clinical needs and recent progress[J]. Journal of Materials Chemistry B, 2013, 1 (8): 1081- 1089.
doi: 10.1039/C2TB00061J
44 袁景, 甄平, 赵红斌. 高性能多孔β-磷酸三钙骨组织工程支架的3D打印[J]. 中国组织工程研究, 2014, 18 (43): 6914- 6921.
doi: 10.3969/j.issn.2095-4344.2014.43.005
44 YUAN J , ZHEN P , ZHAO H B . High-performance porous beta-tricalcium phosphate bone tissue engineering scaffolds using 3D printing[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2014, 18 (43): 6914- 6921.
doi: 10.3969/j.issn.2095-4344.2014.43.005
45 3D打印生物陶瓷用于骨、软骨修复研究获系列进展[J]. 化工新型材料, 2017(8): 279.
45 3D printing bioceramics for bone and cartilage repair research a series of progress[J]. New Chemical Materials, 2017(8): 279.
46 BOSE S , VAHABZADEH S , BANDYOPADHYAY A . Bone tissue engineering using 3D printing[J]. Materials Today, 2013, 16 (12): 496- 504.
doi: 10.1016/j.mattod.2013.11.017
47 TARAFDER S , BALLA V K , DAVIES N M , et al. Microwave sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering[J]. Journal of Tissue Engineering & Regenerative Medicine, 2013, 7 (8): 631- 641.
48 VORNDRAN E , KLARNER M , KLAMMERT U , et al. 3D powder printing of β-tricalcium phosphate ceramics using different strategies[J]. Advanced Engineering Materials, 2008, 10 (12): B67- B71.
doi: 10.1002/adem.v10:12
49 DETSCH R , SCHEAFER S , DEISINGER U , et al. In vitro:osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds[J]. Journal of Biomaterials Applications, 2011, 26 (3): 359- 380.
doi: 10.1177/0885328210373285
50 KLAMMERT U , GBURECK U , VORNDRAN E , et al. 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects[J]. Journal of Cranio-Maxillofacial Surgery, 2010, 38 (8): 565- 570.
doi: 10.1016/j.jcms.2010.01.009
51 FIELDING G A , BANDYOPADHYAY A , BOSE S . Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds[J]. Dental Materials, 2012, 28 (2): 113- 122.
doi: 10.1016/j.dental.2011.09.010
52 GBURECK U , HOLZEL T , DOILLON C , et al. Direct printing of bioceramic implants with spatially localized angiogenic factors[J]. Advanced Materials, 2007, 19 (6): 795- 800.
doi: 10.1002/(ISSN)1521-4095
53 HABIBOVIC P , GBURECK U C , BASSETT D , et al. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants[J]. Biomaterials, 2008, 29 (7): 944- 953.
doi: 10.1016/j.biomaterials.2007.10.023
54 张小锋, 于国强, 姜林文. 氧化铝陶瓷的应用[J]. 佛山陶瓷, 2010, 20 (2): 38- 43.
54 ZHANG X F , YU G Q , JIANG L W . Application of alumina ceramic[J]. Foshan Ceramics, 2010, 20 (2): 38- 43.
55 ZHOU M , LIU W , WU H , et al. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography-optimization of the drying and debinding processes[J]. Ceramics International, 2016, 42 (10): 11598- 11602.
doi: 10.1016/j.ceramint.2016.04.050
56 唐城城, 俞海燕, 乔梁, 等. 选择性激光烧结用Al2O3/PA12复合材料的制备和成型[J]. 塑料工业, 2015, 43 (2): 130- 135.
56 TANG C C , YU H Y , QIAO L , et al. Preparation and molding of Al2O3/PA12 composite used in selective laser sintering[J]. China Plastics Industry, 2015, 43 (2): 130- 135.
57 MELCHER R , MARTINS S , TRAVITZKY N , et al. Fabrication of Al2O3-based composites by indirect 3D-printing[J]. Materials Letters, 2006, 60 (4): 572- 575.
doi: 10.1016/j.matlet.2005.09.059
58 WILKES J , HAGEDORN Y , MEINERS W , et al. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting[J]. Rapid Prototyping Journal, 2013, 19 (1): 51- 57.
doi: 10.1108/13552541311292736
59 YAJIMA S , HAYASHI J , OMORI M , et al. Development of a silicon carbide fibre with high tensile strength[J]. Nature, 1976, 261 (5562): 683- 685.
doi: 10.1038/261683a0
60 SCHULZ M , BORNER M , GOTTERT J , et al. Cross linking behavior of preceramic polymers effected by UV- and synchrotron radiation[J]. Advanced Engineering Materials, 2004, 6 (8): 676- 680.
doi: 10.1002/(ISSN)1527-2648
61 王超, 朱冬梅, 周万城, 等. 填料辅助先驱体转化法制备陶瓷基复合材料的研究进展[J]. 材料导报, 2014, 28 (17): 145- 150.
61 WANG C , ZHU D M , ZHOU W C , et al. Research progress in ceramic matrix composites fabrication via filler-assisted precursor infiltration and pyrolysis method[J]. Materials Review, 2014, 28 (17): 145- 150.
62 陈朝辉, 谢征芳. 活性填料在制备陶瓷基复合材料中的应用[J]. 材料研究学报, 2000, 14 (1): 56- 60.
62 CHEN Z H , XIE Z F . Ceramic matrix composite derived by active filler-controlled-precursor-pyrolysis[J]. Chinese Journal of Materials Research, 2000, 14 (1): 56- 60.
63 谢征芳, 陈朝辉, 李永清, 等. 活性填料铝在聚碳硅烷裂解陶瓷中的应用[J]. 硅酸盐学报, 2000, 28 (3): 240- 244.
63 XIE Z F , CHEN Z H , LI Y Q , et al. Application of aluminium in the preparation of polycarbosilane derived ceramics[J]. Journal of the Chinese Ceramic Society, 2000, 28 (3): 240- 244.
64 ECKEL Z C , ZHOU C , MARTIN J H , et al. Additive manufacturing of polymer-derived ceramics[J]. Science, 2016, 351 (6268): 58- 62.
doi: 10.1126/science.aad2688
65 熊亮萍, 许云书. 陶瓷先驱体聚合物的应用[J]. 化学进展, 2007, 19 (4): 567- 574.
65 XIONG L P , XU Y S . Application of preceramic polymers[J]. Progress in Chemistry, 2007, 19 (4): 567- 574.
66 史毅敏, 罗发, 丁冬海, 等. 预氧化聚碳硅烷先驱体转化法制备SiC陶瓷介电和吸波性能研究[J]. 功能材料, 2017, 48 (2): 2153- 2157.
66 SHI Y M , LUO F , DING D H , et al. Dielectric and microwave absorption properties of SiC ceramics derived from pre-oxidized polycarbosilane precursor[J]. Journal of Functional Materials, 2017, 48 (2): 2153- 2157.
67 PIVIN J C , COLOMBO P . Ceramic coatings by ion irradiation of polycarbosilanes and polysiloxanes:part Ⅰ conversion mechanism[J]. Journal of Materials Science, 1997, 32 (23): 6163- 6173.
doi: 10.1023/A:1018664406046
68 简科, 郑文伟, 马青松, 等. 聚碳硅烷/聚硅氮烷先驱体体系的交联[J]. 有机硅材料, 2003, 17 (2): 5- 7.
68 JIAN K , ZHENG W W , MA Q S , et al. Study on crosslinking of polycarbosilane/polysilazane precursor system[J]. Silicone Material, 2003, 17 (2): 5- 7.
69 陈曼华, 陈朝辉, 尚安. 陶瓷先驱体聚硅氮烷的铂催化交联[J]. 功能高分子学报, 2003, 16 (3): 383- 386.
69 CHEN M H , CHEN Z H , SHANG A . Cross-linking of polysilazane as precursor catalysed by H2[PtCl6xH2O[J]. Journal of Functional Polymers, 2003, 16 (3): 383- 386.
70 POLZIN C , GUNTHER , SEITZ H . 3D printing of porous Al2O3 and SiC ceramics[J]. Journal of Ceramic Science & Technology, 2015, 6 (2): 141- 146.
71 CAPPI B , OZKOL E , EBERT J , et al. Direct inkjet printing of Si3N4:characterization of ink, green bodies and microstructure[J]. Journal of the European Ceramic Society, 2008, 28 (13): 2625- 2628.
doi: 10.1016/j.jeurceramsoc.2008.03.004
72 邓先功, 王军凯, 杜爽, 等. 发泡法、三维打印法、熔盐法制备多孔陶瓷[J]. 材料导报, 2015, 29 (9): 109- 116.
72 DENG X G , WANG J K , DU S , et al. Fabricating porous ceramics through direct foaming, three-dimensional printing and molten salt method[J]. Materials Review, 2015, 29 (9): 109- 116.
73 LI X M , ZHANG L T , YIN X W . Effect of chemical vapor infiltration of Si3N4 on the mechanical and dielectric properties of porous Si3N4 ceramic fabricated by a technique combining 3D printing and pressureless sintering[J]. Scripta Materialia, 2012, 67 (4): 380- 383.
doi: 10.1016/j.scriptamat.2012.05.030
74 TRAVITZKY N , BONET A , DERMEIK B , et al. Additive manufacturing of ceramic-based materials[J]. Advanced Engineering Materials, 2014, 16 (6): 729- 754.
doi: 10.1002/adem.201400097
75 SUN W , DCOSTA D J , LIN F , et al. Freeform fabrication of Ti3SiC2, powder-based structures:part Ⅰ-integrated fabrication process[J]. Journal of Materials Processing Technology, 2002, 127 (3): 343- 351.
doi: 10.1016/S0924-0136(02)00284-4
76 连芩, 武向权, 田小永, 等. 陶瓷增材制造[J]. 现代技术陶瓷, 2017, 38 (4): 267- 277.
76 LIAN Q , WU X Q , TIAN X Y , et al. Additive manufacturing of ceramics[J]. Advanced Ceramics, 2017, 38 (4): 267- 277.
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 牛方勇, 于学鑫, 赵紫渊, 赵大可, 黄云飞, 马广义, 吴东江. 熔体自生陶瓷激光直接能量沉积增材制造研究进展[J]. 材料工程, 2022, 50(7): 1-17.
[3] 李文利, 周宏志, 刘卫卫, 于海宁, 王晶, 巩磊, 邢占文. 光固化3D打印陶瓷浆料及流变性研究进展[J]. 材料工程, 2022, 50(7): 40-50.
[4] 耿鹏, 陈道兵, 周燕, 文世峰, 闫春泽, 史玉升. 增材制造智能材料研究现状及展望[J]. 材料工程, 2022, 50(6): 12-26.
[5] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[6] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[7] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[8] 雷磊, 伍雨驰, 程子晋, 刘莉, 郑靖. 牙科陶瓷材料的摩擦学性能研究进展[J]. 材料工程, 2022, 50(2): 1-11.
[9] 吴晓芳, 陈凯, 张德坤. 可降解水凝胶作为关节软骨修复材料的研究进展[J]. 材料工程, 2022, 50(2): 12-22.
[10] 万李, 王海蟒, 蔡谞, 胡刻铭, 岳文, 张洪玉. 骨软骨组织工程仿生梯度支架研究进展[J]. 材料工程, 2022, 50(2): 38-49.
[11] 陈倩, 赵雪阳, 尤德强, 曾戎, 于振涛, 李卫, 王小健. 3D打印纯钛骨支架表面掺银介孔生物活性玻璃涂层的性能研究[J]. 材料工程, 2022, 50(11): 34-45.
[12] 石磊, 李阳, 肖亦辰, 武传松, 刘会杰. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程, 2022, 50(1): 1-14.
[13] 刘宸希, 康红军, 吴金珠, 曹宁宁, 吴晓宏. 3D打印技术及其在医疗领域的应用[J]. 材料工程, 2021, 49(6): 66-76.
[14] 汤桂平, 严倩, 刘洁, 宋波, 文世峰, 史玉升. 3D打印琼脂糖和海藻酸钠复合水凝胶组织与性能研究[J]. 材料工程, 2021, 49(5): 66-74.
[15] 王海博, 李春燕, 李金玲, 王顺平, 寇生中. Fe基非晶合金粉末的研究进展[J]. 材料工程, 2021, 49(4): 34-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn