Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (7): 100-105    DOI: 10.11868/j.issn.1001-4381.2015.001126
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
700℃(A-USC)锅炉材料617B镍基高温合金热变形及持久行为
王岩1,2, 徐芳泓1,2, 曾莉1,2, 方旭东1,2, 李阳1,2, 李建民1,2
1. 太原钢铁(集团)有限公司 先进不锈钢材料国家重点实验室, 太原 030003;
2. 山西太钢不锈钢股份有限公司 技术中心, 太原 030003
Hot Deformation and Creep Rupture Behaviors of 617B Nickel-base Superalloy for 700℃(A-USC) Boilers
WANG Yan1,2, XU Fang-hong1,2, ZENG Li1,2, FANG Xu-dong1,2, LI Yang1,2, LI Jian-min1,2
1. State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron & Steel(Group) Co., Ltd., Taiyuan 030003, China;
2. Technology Center, Shanxi Taigang Stainless Steel Co., Ltd., Taiyuan 030003, China
全文: PDF(4004 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用Gleeble热压缩、SEM及持久实验方法对617B合金的变形特性、组织演变行为以及析出相进行研究。结果表明:617B合金具有较高的变形抗力,其适宜挤压加工安全温度区间在1165~1200℃;合金失稳存在两种形式:一种为形成绝热剪切带,另一种为完全动态再结晶晶粒的异常生长;显微硬度随持久时间的延长先迅速提高而后趋于平稳,析出物以γ'为主,随着时间的延长析出物有所长大,但无有害相析出,具有较高的持久性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王岩
徐芳泓
曾莉
方旭东
李阳
李建民
关键词 先进超超临界617B合金析出变形    
Abstract:The deformation behavior, microstructure evolution and precipitation phase of 617B alloy were studied by Gleeble thermal simulator, SEM and creep rupture test method. The results show that, 617B alloy has a high deformation resistance and the temperature range of processing secure channel is between 1165-1200℃; alloy instability exists in two forms:one is the formation of adiabatic shear band; another is the abnormal growth of full dynamic recrystallization grain; with extension of the stress rupture time, the microhardness increases rapidly and then tends to be steady, γ' is the main precipitate and the precipitate phase grows up with the time extension, but no harmful phases, and with higher stress rupture strength performance.
Key wordsadvanced ultra-supercritical(A-USC)    617B alloy    precipitation    deformation
收稿日期: 2015-09-10      出版日期: 2018-07-20
中图分类号:  TF133  
通讯作者: 王岩(1982-),男,博士,从事镍基合金方面的研究,联系地址:山西省太原市尖草坪街2号山西太钢不锈钢股份有限公司技术中心(030003),E-mail:wangyan01@tisco.com.cn     E-mail: wangyan01@tisco.com.cn
引用本文:   
王岩, 徐芳泓, 曾莉, 方旭东, 李阳, 李建民. 700℃(A-USC)锅炉材料617B镍基高温合金热变形及持久行为[J]. 材料工程, 2018, 46(7): 100-105.
WANG Yan, XU Fang-hong, ZENG Li, FANG Xu-dong, LI Yang, LI Jian-min. Hot Deformation and Creep Rupture Behaviors of 617B Nickel-base Superalloy for 700℃(A-USC) Boilers. Journal of Materials Engineering, 2018, 46(7): 100-105.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001126      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/100
[1] VISWANATHAN R,HENRY J F,TANZOSH J,et al.U.S.program on materials technology for ultra-supercritical coal power plants[J].Journal of Materials Engineering and Performance,2005,14(2):281-292.
[2] COWEN C J,DANIELSONP E,JABLONSKI P D.The microstructural evolution of Inconel alloy 740 during solution treatment,aging,and exposure at 760℃[J].Journal of Materials Engineering and Performance,2011,20(6):1078-1083.
[3] VISWANATHAN R,COLEMAN K,RAO U.Materials for ultra-supercritical coal-fired power plant boilers[J].International Journal of Pressure Vessels and Piping,2006,83(11/12):778-783.
[4] 谢锡善,赵双群,董建新,等.超超临界电站用Inconel740镍基合金的组织稳定性及其改型研究[J].动力工程学报,2011,31(8):638-643. XIE X S,ZHAO S Q,DONG J X,et al.Structural stability and improvement of Inconel alloy 740 for ultra supercritical power plants[J].Power Engineering,2011,31(8):638-643.
[5] QUN Z S,SHAN X X,SMITH G D,et al.Microstructure stability and mechanical properties of a new nickel-based superalloy[J].Materials Science and Engineering:A,2003,355:96-105.
[6] TANAKA Y.Coal ash corrosion properties of Ni-based alloy for advanced-USC boilers[C]//Proceedings of the 6th Conference on Advances in Material Technology for Fossil Power Plants.Ohio:ASM International,2010.
[7] IGARASHI M.Advances in materials technology for A-USC power plant boilers[C]//Proceedings of the 6th Conference on Advances in Material Technology for Fossil Power Plants.Ohio:ASM International,2010.
[8] VISWANATHAN R.U.S.program on materials technology for ultra-supercritical coal-fired boilers[C]//Proceedings of the 5th Conference on Advances in Material Technology for Fossil Power Plants.Ohio:ASM International,2008.
[9] 赵美兰,孙文儒,杨树林,等.GH761变形高温合金的热变形行为[J].金属学报,2009,45(1):79-83. ZHAO M L,SUN W R,YANG S L,et al.Hot deformation behavior of GH761 wrought Ni base superalloy[J].Acta Metallurgica Sinica,2009,45(1):79-83.
[10] McQUEEN H J.Development of dynamic recrystallization theory[J].Materials Science and Engineering:A,2004(387/389):203-208.
[11] POLIAKT E I,JONASS J J.A one-parameter approach to determining the critical condition for the initiation of dynamic recrystallization[J].Acta Materialia,1996,44(1):127-136.
[12] QUN Z S,SHAN X X,SMITH G D,et al.Gamma prime coarsening and age-hardening behaviors in a new nickel base superalloy[J].Materials Letters,2004,58(11):1784-1787.
[13] EVANS N D,MAZIASZ P J,SWINDEMAN R W,et al.Microstructure and phase stability in INCONEL alloy 740 during creep[J].Scripta Materialia,2004,51(6):503-507.
[14] LEHMANN J,ROCABOIS P,GAYE H.Kinetic model of non-metallic inclusions' precipitation during steel solidification[J].Journal of Non-crystalline Solids,2001,282(1):61-71.
[15] 袁武华,龚雪辉,孙永庆,等.0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J].材料工程,2016,44(5):8-14. YUAN W H,GONG X H,SUN Y Q,et al.Hot deformation behavior and processing map of 0Cr16Ni5Mo low carbon martensitic stainless steel[J].Journal of Materials Engineering,2016,44(5):8-14.
[16] 张施琦,冯定,张跃,等.新型超高强度热冲压用钢的热变形行为及本构关系[J].材料工程,2016,44(5):15-21. ZHANG S Q,FENG D,ZHANG Y,et al.Hot deformation behavior and constitutive model of advanced ultra-high strength hot stamping steel[J].Journal of Materials Engineering,2016,44(5):15-21.
[17] WU Q Y.Microstructure of long-term aged IN617 Ni-base superalloy[J].Metallurgical and Materials Transactions A,2008,39(11):2569-2585.
[1] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[2] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[3] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[4] 高钰璧, 丁雨田, 孟斌, 马元俊, 陈建军, 许佳玉. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48(5): 13-22.
[5] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[6] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[7] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[8] 刘帅, 郭广平, 郝文峰, 杨洋, 张悦, 陈子木. 基于数字体相关方法的3D打印材料内部变形测量[J]. 材料工程, 2020, 48(10): 176-183.
[9] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[10] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
[11] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[12] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[13] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[14] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[15] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn