齿轮渗碳层碳化物形态对耐磨性和接触疲劳的影响

王介淦, 冯正, 周建初

材料工程 ›› 1989, Vol. 0 ›› Issue (6) : 35-40.

PDF(1011 KB)
PDF(1011 KB)
材料工程 ›› 1989, Vol. 0 ›› Issue (6) : 35-40.
工艺

齿轮渗碳层碳化物形态对耐磨性和接触疲劳的影响

  • 王介淦, 冯正, 周建初
作者信息 +

Effect of the Morphology of Carbides in the Carburizing Case on the Wear Resistance and the Contact Fatigue of Gears

  • Wang Jiegan, Feng Zheng, Zhou Jianchu
Author information +
文章历史 +

摘要

12Cr2Ni4A齿轮钢渗碳层中有众多粒状弥散碳化物时,耐磨性和接触疲劳寿命最高。这种渗层可用多段预处理法获得,十分简单,碳化物形态优于国外同类齿轮的渗层。对于重载耐磨航空齿轮,应规定其渗层中要有众多粒状弥散碳化物存在。

Abstract

12Cr2Ni4A gear steel with a great quantity of disperse spheroidal carbides in the carburizing case has superior wear resistance and long life of contact fatigue. This kind of carburizing case can be obtained by multi-stage pre-processing technique. It is easy to manipulate, and the morphology of carbides obtained is better than that of foreign gears. Therefore, it is suggested to stipulate in the technical specification that a large quantity of disperse carbides should be existed in the case of heavy duty gears subjected wear.

引用本文

导出引用
王介淦, 冯正, 周建初. 齿轮渗碳层碳化物形态对耐磨性和接触疲劳的影响[J]. 材料工程, 1989, 0(6): 35-40
Wang Jiegan, Feng Zheng, Zhou Jianchu. Effect of the Morphology of Carbides in the Carburizing Case on the Wear Resistance and the Contact Fatigue of Gears[J]. Journal of Materials Engineering, 1989, 0(6): 35-40

参考文献

[1] 周建初等,金属热处理学报,No.2, 1980, P.64-70
[2] 王介淦等,中国航空科技文献、HJB 8705570
[3] G. Parrish, The Influence of Microstructure on the Properties of Case Carburized Components, ASTM,1980, P.40.
[4] 日本专利GB 2035-381 (1980.6)
[5] 内藤武志等,热处理、Vo1.26, No.2,昭和61年4月.
[6] 百合野寿夫,日本特许公报,昭和48-25620
[7] R. F. Kern, Heat Treating, No.10, 1986.
[8] 周建初等,南航科技报告,No.l 105, 1981 e
[9] 茆诗松,可靠性统计,华东师范大学出版社,1984,
[10] 金属机械性能编写组,金属机械性能,机械工业出版 社.
[11] Y. P. Chin et al., Wear, Vol.l7, 1977,P.443-446.
[12] 朱敦伦等,齿轮接触疲劳破坏机理的探讨,中国机械工程学会第二届热处理年会交流论文,1979.4
[13] 上海玻璃钢结构研究所,玻璃钢结构设计,中国建筑工业出版社,19800
[14] Fitzer, E., Carbon Fibres and Their Composites,
[15] Springer-Verlag Berlin Heidelberg, New York,Tokyo,1985.
[16] Delmonte J., Technology of Carbon and Graphite Fiber Composites, Van Nostrand Reinhold Company, 1981.
[17] Конкчн А.А.,Углеродные и другие жаростйкие волокнистыематериалы,москва,Издательство "Химия", 1974.
[18] Bunsell A.R., Fiber Reinforcements for Composite Materials, Elsevier,1988.
[19] New Developments in Advanced Composites for the 90's, Toray Research Center, INC, 1986.
[20] Hancox N.L., Fiber Composite Hybrid Materials,Applied Science Publisher Ltd, 1981.
[21] Morgan R.J., J.Polym. Sci. Polym. Phys., 21,1757(1983).
[22] Riewald P.G., Phingra A. K, Cherm T. S., ICCM-VI proceedings, P.5,362(1987).
[23] Buron Ch., ICCM-VI proceedings, P.4,65(1987).
[24] Serafin T.T., Delvigs P. and Lightsey G.R J.Appl.Polym. Sci., Vo1.16, p.905(1972);NASA-TND-6601(1972); U. S. pat.3, 745, 149(1973).
[25] Serafini T.T., ACS Organic Coating and Plastics Chemistry, Vol, 40, p.469(1979).
[26] NASA TM-82958(1982).
[27] NASA-CP-2079, p.413(1979).
[28] Clair T.L.St. and Jewell R.A., 8th National SAMPE Tech. Conf., Vol. 8,p.82(1976).
[29] Bilow N., Landis A.L. and Aponyl J.J., SAMPE National Symposium, Vo1.20, p.618 (1975); Vol.23,P.791 (1978).
[30] Daniel A.Scola, ICCM-V proceedings, P.1601(1985)
[31] Potter K.D., Robertson P.C., 32nd International SAMPE sym. P.12(1987).
[32] Chaudhari M., ibid. P. 24(1987)
[33] Stenzenberger H.D.,ibid. P.44(1987).
[34] Block B. and Ropars M., SAMPE national Symposium, Vol. 23, P.836(1978).
PDF(1011 KB)

837

Accesses

0

Citation

Detail

段落导航
相关文章

/