热塑性复合材料由于其良好的可焊接性、可循环利用性、抗化学腐蚀性,特别是短时间内就可加工成型等特点,在未来航空航天构件制造领域有着广阔的应用前景。纤维铺放过程中涉及一系列的物理现象,涵盖传热学、热力学、结晶动力学,牛顿流体力学等学科及这些学科的交叉领域。本文以上述学科的相关知识为理论依据,对纤维铺放工艺中的加热工艺,冷却工艺,铺层间强度,纤维铺放压力和残余热应力五方面内容,通过分析其理论模型的建立和求解方法,介绍和讨论了纤维铺放过程中与最终产品质量相关的基体材料结晶度、铺层间紧密接触程度、铺层间熔合度等关键问题及其中涉及的铺放温度、铺放速率、铺放压力等主要工艺参数。同时,本文还总结了国外的研究成果和研究进展,指出其中存在的一些问题,并对今后纤维铺放工艺的研究方向进行了展望。
Abstract
The thermoplastic composites, which are known for their weldability, recyclability, chemical resistance, and rapid forming, will become common engineering materials in aerospace industry. There are some physical phenomena during fiber placement process, which involves some fields and cross-fields, such as heat transfer, thermomechanics, crystallization kinetics, Newtonian fluid mechanics and so on. Based on above theories, this article analyses theoretical models of heating process, cooling process, interlaminar bond strength, fiber placement compaction load and thermal residual stress, and discusses the influence factors of final products performance, such as matrix material crystallinity, the degree of inter laminar intimate contact, the degree of interlaminar diffusion and so on. The research achievements and research process are summarized and analyzed in this paper, and some problems which still existed and need to be resolved are discussed. The future development trend of fiber placement is also predicted.
关键词
热塑性复合材料 /
纤维铺放 /
加热工艺 /
冷却工艺 /
铺层间强度 /
残余热应力
{{custom_keyword}} /
Key words
thermoplastic composite /
fiber placement /
heating process /
cooling process /
interlaminar bond strength /
thermal residual stress
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]林胜. 自动铺带机/铺丝机(ATL/AFP)-现代大型飞机制造的关键设备(上)[J]. WMEM, 2009, (4): 84-89.
[2]MOREY B. Automating composites fabrication[J].Manufacturing Engineering, 2008, 140(4): 12-16.
[3]VAN BARSCHOT J. Airbus en boeing vliegen met ten cate[N]. NRC Handelsblad, Rotterdam, 2005-01-05(17).
[4]PATRICIA P P, HARALD E N B, BEUKERS A. Residual stresses in thermoplastic composites-a study of the literature-part Ⅰ: formation of residual stesses[J]. Composites: Part A: Applied Science Manufacturing, 2006, 37(11):1847-1857.
[5]LAMONTIA M A, GRUBER M B, TIERNEY J J, et al. Modeling the accudyne thermoplastic in situ ATP process[A]. 30th International SAMPE Europe Conference[C], Paris: SAMPE, 2009.
[6]张晓明,刘亚雄. 纤维增强热塑性复合材及其应用[M]. 北京:化学工业出版社,2007.245-247.
[7]ARONSON R. Composites offer more opportunities manufacturing[J].Engineering, 2005, 135(2):75-83.
[8]LI Yue-hua, FU Hong-ya, SHAO Zhong-xi. The influence of preheating on automated fiber placement speed[A]. Advanced Materials Research[C]. Switzerland, Trans Tech Publications, 2011. 213: 136-142.
[9]GHASEMI NEJHAD M N. Three-dimensional thermal and residual stress analysis of in-situ thermoplastic composite filament winding[D]. Department of Mechanical Engineering, University of Delaware, Newark, Delaware, 1992.
[10]GHASEMI NEJHAD M N. Thermal analysis for thermoplastic composite tow/tape preheating and pultrusion[J]. Journal of Thermoplastic Composite Materials, 1997, 10(6): 504-523.
[11]KLASUS D F, KARL V S. A new compact robotic head for thermoplastic fiber placement[A]. 38th SAMPE Symposium[C], Paris: SAMPE, 1993.138-151.
[12]SHIH P J. On-line consolidation of thermoplastic composites[D]. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Virginia, Blacksburg, 1997.
[13]COLTON J, LEACH D. Processing parameters for filament winding thick-section PEEK/carbon fiber composites[J]. Polymer Composites, 1992, 13(6): 427-434.
[14]PITCHUMANI R, DON R C, GILLESPIE J W, et al. Analysis of on-line consolidation during thermoplastic tow-placement process[J]. Thermal Processing of Materials, 1994, 289: 223-239.
[15]LEE M. Heat transfer and consolidation modeling of composite fiber tow in fiber placement[D]. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Virginia, Blacksburg, 2004.
[16]GROVE S M. Thermal modeling of tape laying with continuous carbon fiber-reinforced thermoplastic. Composites[J], 1988, 19(2): 367-375.
[17]GHASEMI NEJHAD M N, COPE R D, G?CERI S I. Thermal analysis of in situ thermoplastic composite tape laying[J]. Journal of Thermoplastic Composite Materials, 1991, 4(1): 20-45.
[18]TURNKOR S, TURKMEN N, CHASSAPIS C, et al. Modeling of heat transfer in thermoplastic composite tape lay-up manufacturing[J]. Heat Mass Transfer, 2001, 28(1): 49-58.
[19]JANDAL M Z, WIDMANN G. 热分析应用手册系列丛书:热塑性聚合物[M]. 上海:东华大学出版社,2008.1-20.
[20]金日光, 华幼卿. 高分子物理[M]. 北京:化学工业出版社, 2007.80-110.
[21]TIERNEY J J, GILLESPIE J W Jr. Crystallization kinetics behavior of PEEK based composites exposed to high heating and cooling rates[J]. Composites: Part A : Applied Science Manufacturing, 2004, 35(5): 547-558.
[22]BOUTAOUS M, BRAHMIA N, BOURGIN P. Parametric study of the crystallization kinetics of a semi-crystalline polymer during cooling[J]. Comptes Rendus Mecanique, 2010, 338(2): 78-84.
[23]TIERNEY J J, GILLESPIE J W Jr. Modeling of situ strength development for the thermoplastic composite tow placement process[J]. Journal of Composite Materials, 2006, 40(16): 1487-1506.
[24]DARA P H, LOOS A C. Thermoplastic matrix composite processing model[R].Virginia Polytechnic Institute and State University, Virginia, Blacksburg, 1985.
[25]LEE W I, SPRINGER G S. A model for the manufacturing process of thermoplastic matrix composites[J]. Composite Materials, 1987, 21(11): 1017—1987.
[26]MANTELL S C, SPRINGER G S. Manufacturing process models for thermoplastic composites[J].Composite Materials, 1992, 26(16): 2348-2377.
[27]DE GENNES P. Reptation of a polymer chain in the presence of fixed obstacles[J].Chemical Physics, 1971, 55(2): 572-579.
[28]DOI M, EDWARDS S F. Dynamics of concentrated polymer systems[J].Faraday Transactions, 1978, 74(1): 1789-1801.
[29]BASTIEN L J, CILLESPIE J W Jr. A nonisothermal healing model for strength and toughness of fusion bonded joints of amorphous thermoplastics[J]. Polymer Engineering and Science, 1991, 31(24):1720-1730.
[30]YANG F, PITCHUMANI R. Healing of thermoplastic polymers at the interface under nonisothermal conditions[J]. Macromolecules, 2002, 35(8): 3213-3224.
[31]PARLEVLIET P P, BERSEE H E N, BEUKERS A. Residual stresses in thermoplastic composites-a study of the literature-part Ⅱ: experimental techniques[J]. Composites Part A: Applied Science Manufacturing, 2006, 37(3): 651-665.
[32]PARLEVLIET P P, BERSEE H E N, BEUKERS A. Residual stresses in thermoplastic composites-a study of the literature-part Ⅲ: effects of thermal residual stresses[J]. Composites Part A: Applied Science Manufacturing, 2006, 37(6): 1581-1596
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(51005060);国家科技重大专项资助项目(2009ZX04004-111)
{{custom_fund}}