热障涂层(TBC)材料是为航空发动机及燃气轮机提供热防护,延长其使用寿命的一种重要材料。近年对新型热障涂层材料的探索中出现各类高熵稀土氧化物,以期通过热力学上的高熵效应、动力学上的迟滞扩散效应、结构上的晶格畸变效应以及性能上的“鸡尾酒”效应获得优于单主元稀土氧化物的热学、力学、高温相稳定性及抗烧结腐蚀等性能。本文总结归纳了高熵稀土锆酸盐、铈酸盐、铪酸盐、钽酸盐及铌酸盐等五种高熵稀土氧化物的热学性质、力学性质及其他性质,着重强调了热导率和热膨胀系数,同时与相应单组分稀土氧化物的性能进行对比分析,探究影响其性能优劣的多种因素。最后指出未来或可将实验与第一性原理计算相结合,筛选出综合性能更加优异的高熵陶瓷热障涂层材料;同时,将高熵延伸至复杂组分或中熵陶瓷热障涂层材料也成为重要的拓展方向。
采用真空电弧熔炼炉制备Fe40Cr25Ni25Al5Ti5(原子分数/%)中熵合金,利用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、透射电镜(TEM)及拉伸试验机研究合金固溶态和退火态的微观组织、力学性能、强化机制及变形机制。结果表明:Fe40Cr25Ni25Al5Ti5中熵合金固溶态为FCC+BCC1+BCC2三相固溶体组织,屈服强度为520 MPa,断裂强度为852 MPa,伸长率为13%。经600 ℃退火2 h,合金相组成未改变,颗粒状BCC2相尺寸增大,FCC区与BCC区体积分数无明显变化,屈服强度为668 MPa,断裂强度达1029 MPa,伸长率降低至9%。Fe40Cr25Ni25Al5Ti5合金的强度源于共格应变强化、固溶强化及界面强化的协同作用,位错滑移为合金主要的变形机制。
采用静态氧化实验与XRD,FSEM测试技术对电弧熔炼制备的NbMoTaWV难熔高熵合金的高温氧化行为进行研究。结果表明:1000 ℃及1200 ℃下NbMoTaWV由于氧化层开裂严重失去保护性,氧化增重遵循直线氧化规律;1400 ℃下生成的熔融态氧化物释放氧化层的生长应力,填补Mo,V氧化物挥发留下的孔洞,使氧化层对氧气能够起到一定的阻隔作用,氧化增重遵循抛物线氧化规律。在NbMoTaWV的氧化过程中,氧气扩散进入基体内部后率先与扩散层中的Nb和Ta发生氧化反应,生成针棒状氧化物,之后与其他合金元素发生氧化反应,W的氧化物固溶在Nb和Ta氧化物中,颗粒状的Mo和V混合氧化物在高温下挥发。
为了获得兼具高强度与高延展性的Al-Co-Cr-Fe-Ni系高熵合金,采用电弧熔炼的方法成功制备了Al1.2CoxCrFeNi(x=1, 1.6, 2.2, 2.8)高熵合金并对其微观组织和力学性能进行了系统研究。结果表明:在Al1.2CoxCrFeNi合金体系中,Co元素具有诱导BCC相向FCC相转变的能力,随着Co含量的原子比例从1增加至2.8,FCC相的体积分数从0%增加到59%,BCC相的体积分数从100%降低至41%。压缩实验的结果表明,Co元素的加入对于提高Al1.2CoxCrFeNi高熵合金的塑性有重要作用,但对高熵合金的强度无明显影响。随着Co含量的增加,Al1.2CoxCrFeNi高熵合金的断裂应变从16.9%增加到30%,极限抗压强度由2128 MPa降低至1913 MPa,其中最大抗压强度为2361 MPa,平均硬度由513.7HV降低至323.4HV。Co含量的增加促使了合金的原子半径差的降低,从而减弱了因Al元素的大原子半径引起的合金晶格畸变效应和固溶强化效应,同时Co含量的增加也提高了价电子浓度(VEC),以上两个参数的改变是合金中FCC相体积分数的增加的主要因素。FCC相体积分数的增加是该体系合金塑性提高的主要原因。
高熵合金因其多种合金元素以等原子比或近等原子比的组合而具有高熵效应、严重的晶格畸变、缓慢扩散以及特殊而优异的材料性质等特点,在各个领域引起极大的关注。其高强度和硬度、抗疲劳性、优异的耐腐蚀性、耐辐照性以及接近零的热膨胀系数、催化响应、热电响应及光电转换等特性,使高熵合金在许多方面有潜在的应用。高通量计算及机器学习技术迅速成为探索高熵合金巨大成分空间和综合预测材料性能的有力手段。本文介绍高通量计算与机器学习的基本概念,论述第一性原理计算、热动力学计算与机器学习在高熵合金研究中的优势,并总结它们在高熵合金成分筛选、相与组织计算以及性能预测等方面的应用研究现状。最后提出该领域目前存在的问题,并提供解决思路与未来展望,包括开发适用于高熵合金的第一性原理计算与机器学习工具、构建高质量高熵合金数据库、将高通量计算与机器学习相融合对高熵合金的力学及服役性能进行全局优化等。
采用机械合金化工艺制备AlFeNiCrCoTi0.5高熵合金粉末, 通过先冷等静压、后等径角挤压的方法制备(AlFeNiCrCoTi0.5)p/6061Al复合材料。研究AlFeNiCrCoTi0.5高熵合金粉末各单质金属间的合金化行为及球磨时间对合金粉末形貌的影响, 分析不同体积分数对(AlFeNiCrCoTi0.5)p/6061Al复合材料的组织和性能。结果表明: AlFeNiCrCoTi0.5金属粉末合金化时间随单质金属的熔点提高而增加, 且金属熔点越高, 其合金化越先进行, 当球磨时间达到70 h时, AlFeNiCrCoTi0.5金属粉末完全合金化, 形成FCC+BCC的双相固溶体结构。6061Al基体与AlFeNiCrCoTi0.5高熵合金增强体之间形成元素相互浸渗的过渡层。随着增强体体积分数的提高, 增强体聚集行为加剧, 抗拉强度提高, 塑性降低。当体积分数为10%时, 复合材料获得良好的综合性能, 与6061Al基体相比, 抗拉强度提高21.8%, 伸长率降低7.4%。T6处理后其抗拉强度和伸长率分别为284.05 MPa和11.51%。
高熵合金涂层在提高不锈钢基材的耐磨性方面具有巨大的潜力。为探究Cu/Si两种元素掺杂对FeCoCrNi高熵合金涂层组织及高温摩擦学性能的影响, 采用激光熔覆技术在304不锈钢表面制备出FeCoCrNiCux和FeCoCrNiSix系列高熵合金涂层。采用XRD, SEM, EDS等手段表征了涂层的微观组织及物相分布, 通过高温摩擦磨损试验机测试了涂层的高温摩擦学性能。结果表明: 在合适的激光熔覆工艺参数下, FeCoCrNiCux和FeCoCrNiSix高熵合金涂层均形成了单一的FCC型固溶体, 与基体呈良好的冶金结合; Cu元素的加入降低了FeCoCrNi涂层表面硬度, 但由于涂层热导率提高, 界面结合情况改善; Si元素的加入促进了晶粒细化, 提高了涂层表面硬度; 在600 ℃下, Cu/Si元素的加入对涂层的摩擦学性能均有明显改善, 其中FeCoCrNiCu及FeCoCrNiSi涂层的摩擦因数分别为0.24和0.19, 磨损率分别为1.58×10-4 mm3·N-1·m-1和6.77×10-5 mm3·N-1·m-1, 相比于FeCoCrNi涂层分别降低了56.1%和81.9%。FeCoCrNiCu涂层主要磨损机制为氧化磨损、疲劳磨损及轻微磨粒磨损, 而FeCoCrNiSi涂层为氧化磨损。
采用真空电弧熔炼法制备FeCoNiAlCrx(x=0, 0.2, 0.4, 0.6, 0.8,原子比,下同)高熵合金铸锭,探究Cr含量对该合金微观结构、组织及力学性能的影响。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)对合金相结构、微观组织及成分进行分析表征;采用万能试验机对合金压缩性能进行测试。结果表明:随着Cr含量的增加,合金的微观结构由单相BCC结构转变为BCC+FCC混合结构;合金微观组织由等轴晶逐步转变为树枝晶,并且合金晶粒尺寸发生了明显细化。本实验制备的五种合金都具有较好的力学性能,合金的抗压强度随着Cr含量的增加大幅度增强,当x=0时合金抗压强度和塑性应变最低,分别为1500 MPa和13.56%;当x=0.8时,合金抗压强度和塑性应变达到最大,分别为2460 MPa和30.09%;合金抗压强度的增幅达64%。这表明Cr添加对FeCoNiAlCrx高熵合金的组织细化、抗压强度和塑性的提升具有重要作用。
利用XRD,SEM/EDS,EBSD,电化学测试等表征手段研究Cr含量对CrxMnFeNi(x=0.8,1.0,1.2,1.5)高熵合金微观组织与耐蚀性能的影响。结果表明:Cr0.8MnFeNi高熵合金为单相FCC结构,CrxMnFeNi(x=1.0,1.2,1.5)高熵合金为FCC+BCC双相结构,且BCC相比例随着Cr含量升高而增加。在0.5 mol/L H2SO4溶液中,高熵合金的耐蚀性能随着Cr含量降低而增强,其中,Cr0.8MnFeNi单相高熵合金的耐蚀性能最好,这是因为Cr0.8MnFeNi高熵合金的成分更为均匀。此外,CrxMnFeNi高熵合金在0.5 mol/L H2SO4溶液中均具有宽泛的钝化区域以及明显的伪钝化区域,表明合金在耐蚀性能上具有较大的研究价值和开发潜力。
对物理法制备的再生铜合金粉末进一步合金化,通过机械合金化(MA)结合放电等离子烧结(SPS)的方法制备了(Fe40Ni40Mn20)50Cu50,(Fe38Ni38Mn19Al5)50Cu50,(Fe36Ni36Mn18Al10)50Cu50和(Fe32Ni32Mn16Al20)50Cu50四种中熵合金块体,并研究了Al元素的含量对中熵合金微观组织与力学性能的影响。结果表明:在高能球磨60 h之后合金粉末完成合金化,四种中熵合金粉末均形成单一FCC相的过饱和固溶体且有微量WC杂质。经SPS烧结后,(Fe40Ni40Mn20)50Cu50,(Fe38Ni38Mn19Al5)50Cu50和(Fe36Ni36Mn18Al10)50Cu50形成了由富Cu的FCC1相和富Fe-Ni的FCC2相组成的双相FCC结构,并具有超细晶+微米晶的多尺度结构;而(Fe32Ni32Mn16Al20)50Cu50由富Cu的FCC主相和少量富Fe-Mn的FCC2相及富Ni-Al的BCC相(B2)组成。随着Al含量的提高,四种中熵合金的塑性逐渐降低,而强度和硬度逐渐提高。(Fe40Ni40Mn20)50Cu50合金的压缩屈服强度、抗压强度和维氏硬度分别为878 MPa,1257 MPa和248.5HV。与(Fe40Ni40Mn20)50Cu50相比,(Fe32Ni32Mn16Al20)50Cu50的压缩屈服强度和硬度分别提高了50.1%和50.4%,断裂应变由19.55%下降至8.31%。
采用气雾化法制备预合金粉末, 通过选区激光熔化(selective laser melting, SLM)制备AlxCoCrFeNi(x=0.3, 0.5, 0.7, 1.0)高熵合金。通过X射线衍射仪、扫描电镜以及纳米压痕实验, 综合分析AlxCoCrFeNi的物相、微观组织、硬度、杨氏模量及蠕变曲线, 探讨Al含量对AlxCoCrFeNi显微组织及纳米压痕的影响。结果表明: Al含量对物相组织有显著影响, 其中Al0.3CoCrFeNi与Al0.5CoCrFeNi为FCC结构, Al0.7CoCrFeNi和Al1.0CoCrFeNi为BCC/B2结构。Al0.3CoCrFeNi和Al0.5CoCrFeNi主要由等轴晶组成, Al0.7CoCrFeNi和Al1.0CoCrFeNi主要由柱状晶组成。随Al含量增加, 孔隙及裂纹等缺陷增加。在Al0.3CoCrFeNi和Al0.5CoCrFeNi中没有观察到明显的熔池形貌。随Al含量增加, 样品残余应力增加。随Al含量增加, 硬度增加, 由Al0.3CoCrFeNi的447HV增加至Al1.0CoCrFeNi的567HV。Al0.3CoCrFeNi杨氏模量约为273 GPa, Al0.5CoCrFeNi约为233 GPa, Al0.7CoCrFeNi和Al1.0CoCrFeNi杨氏模量相近, 分别为240 GPa和242 GPa, 硬度与杨氏模量的变化主要与组织及物相有关。与传统蠕变曲线不同, AlxCoCrFeNi的纳米压痕蠕变曲线只包括瞬时蠕变和稳态蠕变两个阶段, 其蠕变机制主要为位错蠕变, 其中Al0.7CoCrFeNi具有最好的抗蠕变性能。Al0.3CoCrFeNi具有最好的打印成形性, 其屈服强度为702 MPa, 伸长率为27.5%。
近年来, 高熵合金成为金属材料领域的研究热点。高熵合金处于相图中心区域, 具有广阔的合金成分空间和组织结构形成可能; 成分和制备工艺的协同调控, 能够获得更丰富的组织结构; 非常规的化学结构有望突破传统抗磨、润滑合金的性能极限。本文讨论了耐磨高熵合金的分类, 分析了化学活泼金属、软金属、难熔金属的添加对高熵合金抗磨、润滑性能的影响规律; 总结了非金属元素和陶瓷相的添加对高熵合金基复合材料摩擦磨损性能的影响; 综述了热处理和表面工程技术对高熵合金表面组织结构和摩擦磨损行为的作用; 讨论了苛刻工况下抗磨润滑高熵合金的设计方法。对未来高熵合金在摩擦磨损领域的研究和应用进行了展望, 高熵合金在解决传统合金的瓶颈问题上具有巨大潜力, 如在极端工况下实现稳定润滑抗磨、保证特定功能作用下实现抗磨。
机械零部件的摩擦磨损主要发生在材料表面, 约有80%的零件工作失效是由表面磨损造成的。摩擦磨损增加了材料和能量的损耗, 降低了可靠性和安全性。使用激光熔覆技术在基体表面制备高熵合金涂层的方法, 能够使涂层与基体实现良好的冶金结合, 以达到提升表面耐磨性能的目的。影响高熵合金涂层耐磨性的因素主要有涂层材料的力学性能, 如硬度、塑性和韧性; 熔覆过程中产生的缺陷, 如表面粗糙不平、气孔和裂纹; 摩擦工况, 如高温环境和腐蚀环境。本文分析总结了激光熔覆高熵合金涂层的耐磨性影响因素及强化机制。首先, 阐明了激光工艺参数(激光功率、激光扫描速度、光斑直径)和后处理工艺(热处理和轧制)对涂层质量及性能的影响; 其次, 概述了组元元素选择、高温环境和腐蚀环境对涂层耐磨性的影响; 最后, 对激光熔覆技术制备高熵合金涂层存在的问题进行归纳分析, 并对未来的发展趋势进行了展望, 如基于远平衡态的材料设计理论研发新材料、利用电场-磁场协同或激光-超声振动复合等新工艺提升涂层耐磨性等。
本文简述了难熔高熵合金的含义与特点, 归纳了各类难熔高熵合金(块体、薄膜、涂层)的制备方法, 重点阐述了难熔高熵合金的综合性能。建议通过构建专门的难熔高熵合金数据库优化成分设计, 并着重于不同制备方法的工艺性研究。针对目前难熔高熵合金存在室温脆性大、密度大、成本高等不足, 提出可根据所需难熔高熵合金的性能而选择不同的制备方法, 以便未来工业化应用。
采用激光直接沉积技术成功制备等原子CoCrFeNiMn高熵合金。研究沿试样沉积高度方向上的气孔的大小、数量和组织结构及室温(293 K)和低温(77, 200 K)下试样的拉伸性能。结果表明: CoCrFeNiMn合金表现出定向结晶规律, 在合金底部区域晶界处形成伴有长形气孔的树枝状柱状晶, 随着区域靠近试样顶部, 晶粒形态转变为等轴晶粒。而在试样顶部区域, 气孔形状呈圆形且数量大大降低。比较在77, 200 K和293 K温度下的合金的相应拉伸性能可知: 试样顶部区域选取的77 K拉伸试样具有更好的性能, 但在中部区域的293 K拉伸试样和在底部区域中的200 K拉伸试样的伸长率相似, 这是由于试样不同的气孔率和组织结构的差异所致。
高熵合金(HEAs)表现出比传统合金更为优异的耐磨耐蚀性能, 逐渐成为金属材料领域的研究热点。采用金属热还原法制备不同W含量的CoCrFeNiMnAlWx(x=0.12, 0.15, 0.19)高熵合金, 研究微量W元素的添加对CoCrFeNiMnAlWx高熵合金的相结构、微观组织与性能的影响。采用XRD, SEM和EDS等技术表征该合金的相结构、显微组织及元素分布, 利用材料表面性能测试仪和电化学工作站测定该合金的摩擦磨损性能和电化学腐蚀性能。结果表明: 不同W含量高熵合金均由两种不同晶格常数的BCC相组成, 随着W含量的增加, BCC1相微观相貌并没有明显的变化, 但是BCC2相的微观形貌和元素分布随W含量的变化而明显变化, 而耐磨损性能和耐腐蚀性能均有一定程度的提高, CoCrFeNiMnAlW0.19合金的摩擦因数和磨损率分别为0.684和1.06×10-5 mm3/(N·m), 磨损机制由黏着磨损转变为黏着磨损和磨粒磨损相结合, 最后再转变为摩擦磨损; 在3.5%NaCl溶液中的腐蚀电流密度从6.08×10-6 A/cm2减小到1.72×10-6 A/cm2, 腐蚀速率也逐渐减小。
结合实验和晶体塑性有限元方法研究准静态加载NiCoCrFe高熵合金有限变形过程中的宏观和微观力学响应、损伤行为以及微观结构演化。使用电子背散射衍射技术(EBSD)对拉伸实验变形前后NiCoCrFe的微观结构进行表征。通过修改强化模型和流动准则分别在CPFEM模型中引入位错密度内部状态变量和连续介质损伤因子, 并结合拉伸实验应力-应变曲线确定NiCoCrFe相关的模型参数。结果表明: 考虑位错密度和损伤的CPFEM模型可以有效地描述NiCoCrFe宏观和微观力学响应。CPFEM模型合理预测NiCoCrFe颈缩区域的变形形状和尺寸, 其中实验获得的颈缩区域长度比预测结果小7%, CPFEM预测的颈缩区域宽度比实验结果大23%。CPFEM模型预测NiCoCrFe拉伸变形后的织构演化同EBSD表征结果大致相同, 均表现为弱的(100)//RD以及强的(111)//RD纤维织构。在三维微观结构损伤分析中, CPFEM模型预测的损伤在应力集中以及位错密度集中的晶界处萌生, 表现为晶间损伤机制, 并且随着变形的增加损伤逐渐向晶粒内部扩展。