随着物联网的发展,微型化自供电电子产品的快速发展和进一步微型模块化大大刺激了对微尺度的电化学储能装置的迫切需求。在各电化学储能装置中,基于平面图案形状的超级电容器在小型化和集成化等功能性特征上与现代电子产品高度兼容。本工作采用半导体制备技术与电流体喷印技术相结合的方法制备柔性3D叉指电极对称微型电容器,并采用富氧活性炭油墨进行3D喷印,通过调控优化电场强度、线宽、喷印层数等参数,制备3D叉指对称电极,采用电子散射能谱(EDS)、扫描电子显微镜(SEM)、流变仪、电化学工作站以及器件测试系统对材料、浆料以及微型电容器器件进行表征,探究材料以及浆料对3D叉指电容器性能的影响,结果表明:利用半导体和电流体喷印相结合工艺制备的3D叉指微型电容器具有优异的性能,其面积电容可以达到22.3 mF·cm-2,此外,通过封装优化,此器件在循环2000周次后可以实现96%的容量保持率。这种简易可控制的3D喷印技术为先进的微型化电化学储能器件提供了一种有效的制备途径。
锂离子电容器是介于锂离子电池和超级电容器两者之间的储能器件,兼具高能量密度和高功率密度,被认为是最有前途的电能储存系统之一。本文总结近年来碳基和嵌锂型正极材料的研究进展,详细介绍碳基和嵌锂型电极材料的分类和改性方法。为提高锂离子电容器的使用性能,通过微观结构调控、表面修饰、掺杂改性及复合材料等手段进一步优化正极材料,进行正负极动力学匹配,综合提高其电化学性能。最后梳理出未来锂离子电容器正极材料的研究热点集中在对正极材料微观结构的调控优化、元素掺杂和表面改性以及与其他材料复合等方面,并指出未来发展方向在于优化碳材料的结构与组成、克服倍率和循环性能的限制以及开发在高压下更稳定的正极材料等。
由于电动汽车在大多数时间处于非工作状态,因此电池搁置期间的日历老化会对电池的寿命产生显著影响。高温加速实验是快速评价电池日历寿命的常用方法,为了获得可靠的高温加速老化实验结果,需要对不同温度条件下的电池衰减机理进行研究。以高镍三元/硅氧碳软包电池为研究对象,基于无损的电化学微分曲线分析和电池拆解验证,研究不同搁置温度对高镍/硅氧碳电池日历老化性能及老化机制的影响。结果表明:随着搁置温度的升高,电池老化速度逐渐加快,表现为容量加速衰减和直流内阻大幅增加。无损分析结果表明:活性锂损失和正极活性物质损失是电池日历老化的主要影响因素,随着温度升高,电池的活性锂损失程度和正极活性物质损失程度都有所增加,负极老化情况基本保持不变;进一步结合拆解验证结果表明:55℃下的高温搁置加速了正极材料性能的衰退,高温下正极NCM811材料颗粒出现内部裂纹和粉化,不宜作为电池搁置期间加速老化实验的加速因子。
电介质电容器因其极高的功率密度, 近年来在工业生产、基础科研、航空航天、国防军工等领域发挥着越来越重要的作用。然而, 电介质电容器较低的能量密度导致其体积普遍较大, 难以满足未来器件的小型化需求。聚合物-陶瓷复合电介质材料可以将陶瓷材料的高介电常数与聚合物材料的高击穿场强联合起来, 进而有望获得优异的储能特性。当前, 发展具有高储能密度的聚合物-陶瓷复合电介质材料对于未来实现电介质电容器的小型化目标至关重要。本文主要从纳米填料调控、聚合物-陶瓷界面优化和多层复合结构设计三个角度出发, 系统总结了目前聚合物-陶瓷复合电介质储能材料的研究进展, 详细介绍了纳米填料的维度、尺寸、种类和多级结构, 表面修饰改性和构筑核壳结构等界面优化方法以及三明治结构和梯度结构等多层复合结构设计对复合电介质材料的介电常数、击穿场强和储能密度的影响规律, 分析探讨了复合电介质材料的微观结构与其储能特性之间的构效关系。最后, 针对当前研究存在的挑战和不足, 指出选用新型二维纳米填料、提升能量存储效率、采取多方式协同优化策略以及构筑相应的电容器件将是该领域未来的重点发展方向。
采用易于规模化的湿法包覆工艺成功制备了石墨烯纳米片与聚(3,4-亚乙基二氧噻吩)∶聚(苯乙烯磺酸盐)(PEDOT∶PSS)共包覆的LiCoO2正极材料(GP-LCO),使用X 射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)及电化学测试方法研究包覆前后材料的晶体结构、微观形貌及电化学性质。结果表明∶均匀分散的石墨烯纳米片(1%,质量分数,下同)与PEDOT∶PSS (2%)在LiCoO2颗粒表面形成均一的包覆层;电化学测试结果表明,石墨烯纳米片与PEDOT:PSS所形成的复合包覆层不仅提升了材料的电化学反应速率,还改善了电化学反应的可逆性;经过表面包覆的GP-LCO添加2% Super P导电剂所制备的电极,在2.5~4.5 V(vs. Li+/Li)的电压范围内,0.1 C倍率下首次放电比容量173.9 mAh/g,10 C倍率下仍能表现出118.0 mAh/g的放电容量,循环性能和倍率性能均优于未包覆的LiCoO2材料(LCO)。
锂离子电容器作为新一代电化学储能系统,结合高能量和高功率密度的优势,满足多功能电子设备和电网侧储能的迫切需求。然而,电池型负极和电容型正极之间的动力学不匹配严重制约了其电化学性能。为解决这一瓶颈,制备一种高性能双碳锂离子电容器,该器件采用乙二胺四乙酸铁钠盐(EDTA-Na-Fe)衍生而成的碳材料同时作为正、负极。通过简单的煅烧,EDTA-Na-Fe可直接转化为氮掺杂碳骨架(NCF),该碳骨架具有较高的可逆容量和良好的电化学性能。使用NCF同时作为锂离子电容器的正、负极,能够在0.5~4.0 V的电压区间工作,并且由于使用同样的正负极材料,简化器件的构筑流程;在225 W·kg-1的功率密度下,所构筑器件的能量密度能达到193.4 Wh·kg-1。这种合理的动力学匹配策略为进一步发展高性能锂离子电容器开辟一条新的途径。
为开发高能量密度的锂离子电池,补锂技术受到广泛的关注。以LiNO3-LiOH混合锂盐为反应介质和锂源、纳米Fe2O3为铁源,通过熔盐法成功制备出正极补锂材料Li5FeO4,采用正交实验法优化Li5FeO4的合成工艺条件,讨论合成条件对材料电化学性能的影响。将Li5FeO4添加到LiFePO4正极极片表面,并与石墨负极组装成全电池,研究其对全电池电化学性能的影响,以及降低锂离子电池初始容量损失的机制。结果表明,使用熔盐法可制备出纯度高、粒径小且电化学性能好的Li5FeO4正极补锂材料,在0.05 C倍率下具有672.8 mAh·g-1的脱锂比容量;当添加2.8%(质量分数)的Li5FeO4(基于活性物质质量的占比),LiFePO4/石墨全电池在0.05 C倍率下的首周放电比容量为150 mAh·g-1,相较于未添加的高出8.5%,在0.2 C的倍率下循环100周次后,容量依旧有7.1%的提升,体系的不可逆容量得到恢复。
通过一种简便的方法制备氧空位缺陷的氢化TiO2包覆核壳结构C/Fe3O4@rGO(H-TiO2/C/Fe3O4@rGO)复合材料,作为锂离子电池(lithium-ion batteris, LIBs)高性能阳极材料。TiO2在Li+脱嵌过程中体积膨胀系数约为4%,可缓解Fe3O4在充放电过程中的体积膨胀,提高阳极材料结构的稳定性。同时,通过氢化处理改善TiO2较低的电导率(约1×10-12 S·m-1)。H-TiO2/C/ Fe3O4@rGO在0.3 A·g-1的电流密度下循环200周次后比容量为867 mAh·g-1,在1 A·g-1的电流密度下循环700周次的比容量为505 mAh·g-1,这些结果远大于石墨的理论容量(372 mAh·g-1),表明H-TiO2/C/ Fe3O4@rGO复合材料具有用作LIBs阳极材料的前景。
碱金属离子电池作为可充电电池, 是目前重要的储能设备之一。它凭借能量密度大、工作电压高、无"记忆效应"、自放电小、绿色无污染等优点在近些年来受到人们的广泛关注。电极材料是影响碱金属离子电池电化学性能的重要因素之一, 因此, 寻求比容量高、结构稳定的电极材料是推动碱金属离子电池发展的关键。量子点/碳复合材料(QDs/C)集合量子点与碳材料的优势, 是碱金属离子电池优异的候选电极材料。本文首先对量子点进行简要介绍, 然后分别综述单质量子点/碳复合材料、化合物量子点/碳复合材料及异质结构量子点/碳复合材料在碱金属离子电池中的应用进展。最后, 分析量子点/碳复合材料作为碱金属离子电池电极材料的优势与不足, 针对目前存在的问题提出了未来发展的方向: (1)探索新型方法, 解决量子点及其复合材料的团聚问题; (2)研究SEI膜的结构性能等, 解决首次库仑效率偏低的问题; (3)明确反应机理, 获取更优异的电化学性能。
为了满足储能系统和电动汽车市场对于高能量密度和快充的需求,兼具高能量和高功率密度的锂离子电池得到了广泛的关注。厚电极结构设计能够显著提高电池的能量密度并降低成本,且能与各种电极材料相兼容,是发展高能量密度锂离子电池的研究热点之一。厚电极通常面临着力学性能差和反应动力学慢等问题,因此构建力学性能良好和完善的锂离子及电子传输网络的厚电极至关重要。本文首先分析了厚电极的电化学特性和关键科学问题,然后梳理了目前构建厚电极的各种策略及其优势,最后探讨了厚电极的设计原则和发展方向。
随着电动汽车的发展,对电池能量密度提出了更高的要求,具有高能量密度的高镍/硅氧碳软包电池成为长续航电动汽车的首选,但是高镍/硅氧碳电池在实际使用中存在容量快速衰减的问题。采用无损电化学分析和事后拆解分析对循环过程中电池容量和内阻的变化进行检测,通过对比电池循环前后正负极结构、材料形貌和表面成分的变化,揭示高镍/硅氧碳电池循环失效机制。结果表明:电池容量衰减呈现平稳期、快速衰减期和急速衰减期3个阶段。循环后电池极化更加严重,电池极化内阻、负极表面膜阻抗和电荷转移阻抗明显增加。通过微分曲线分析结合拆解分析发现,高镍正极材料衰减较少,硅氧碳负极材料衰减和活性锂离子损失较多。硅氧颗粒膨胀开裂,负极活性物质损失,负极表面膜连续生长消耗过多的活性锂为电池容量快速衰减的主要原因。
以Li2CO3与锐钛矿型TiO2为原料,六水合硝酸钇(Y(NO3)3·6H2O)为钇源,采用球磨辅助固相法合成了Li4Ti5-xYxO12(x=0,0.05,0.10,0.15,0.20)负极材料。通过X射线衍射分析(XRD)、扫描电镜(SEM)、能谱仪(EDS)与X射线光电子能谱(XPS)分别对材料的物相与形貌进行表征分析,并利用电化学工作站对材料的电化学性能与电荷输运特性进行测试。结果表明,Y3+掺杂没有影响尖晶石型Li4Ti5O12(LTO)材料的尖晶石结构,x=0.15时,Li4Ti4.85Y0.15O12样品的离子与电子电导率分别为2.68×10-7 S·cm-1和1.49×10-9 S·cm-1,比本征材料提升了1个数量级,表现出良好的电荷输运特性。电化学测试表明,Li4Ti4.85Y0.15O12样品在0.1 C倍率首次放电比容量可达171 mAh·g-1,且在10 C与20 C高倍率下仍然拥有102 mAh·g-1和79 mAh·g-1的较高比容量,循环200周次后容量保持率分别为92.6%和89.1%,表现出良好的倍率特性。
锂硫电池具有比容量高、生产成本低及环境友好等特点,是一种高能量密度的储能系统,在便携式电子设备储能中有巨大的发展潜力与应用前景。然而,锂硫电池在实际应用中仍面临着库仑效率低和寿命短等问题。这主要归因于多硫化物穿梭效应、S8和Li2S电导率低和锂枝晶生长不可控。抑制锂枝晶生长和阻止可溶性多硫化物与锂之间的反应不仅能增强锂硫电池的安全性和电化学性能,对高容量锂硫电池也至关重要。本文全面回顾了锂硫电池发展,着重介绍了高硫负载锂电池所取得的进展。通过分析机理了解锂硫电池的运作机制进而制定改进方式,包括对阴极使用分级多孔碳并进行元素掺杂以增加活性物质硫负载率,减少多硫化物的穿梭效应。还介绍了液态和固态电解液系统的发展以及增强阳极稳定性的各种策略。深入了解锂硫电池机理能加强对锂硫电池认知,可以指导高硫负载锂硫电池未来的发展。同时,提高各组件之间协同作用可进一步推动锂硫电池技术从纽扣电池和软包电池到随后的商业化规模应用。
随着新能源汽车产业的迅速发展,消费者对电动汽车续航里程的要求不断提高。高镍三元锂离子电池因其比能量高成为电动汽车中最具应用前景的动力电池,但该电池体系依然面临着低温性能差的问题。本文综述近年来高镍三元锂离子电池低温性能的研究进展,重点总结高镍三元锂离子电池低温性能的影响因素,一方面从热力学角度分析低温下高镍三元正极材料和石墨负极材料的结构变化、电解液相态和溶剂化结构变化以及黏结剂玻璃化转变对电池低温性能的影响;另一方面从动力学角度分析高镍三元电池低温放电过程中的速率控制步骤。归纳目前高镍三元锂离子电池低温性能的主要改善措施,其中低温电解液的设计包括优化溶剂、改善锂盐及使用新型添加剂三个方面,对电极材料低温性能的改善主要是通过体相掺杂、表面包覆及材料颗粒粒径降低的方式。总结电池中低温性能研究中存在的对电池低温热力学特性研究不够明确、对电池低温动力学过程研究方式单一以及对电池中的反应顺序存在的影响认识不足等问题。
针对富锂锰基正极材料独特的首周充电特性, 设计了一种脉冲化成制度, 通过优化化成制度减少富锂锰基/硅碳体系电池化成过程中的产气量, 提高电池的循环电化学性能。通过GC-MS, SEM, XPS和电化学测试表明, 对比传统的化成制度, 采用脉冲化成制度后电池的产气量降低了37%左右。此外, 脉冲化成制度能在正、负极活性物质表面形成一层致密的膜结构, 同时可以缓解化成过程中电芯结构的应力, 稳定电极结构。脉冲化成制度还可以有效地节省化成时间, 将时间从102.6 h缩短至81.5 h。提升了长循环过程中的电化学稳定性, 500周次循环后, 容量保持率和中值电压均得到了显著的提升。
为了更好地推动高储能密度和高效率无铅陶瓷介质电容器的研究与发展, 本文综合介绍了陶瓷电介质储能材料的储能原理及分类, 比较分析了近年来线性电介质、铁电体、弛豫铁电体和反铁电体储能材料的研究进展, 主要研究体系和性能优劣。总结了陶瓷储能材料目前面临的挑战以及改善其储能性能的策略, 展望了其未来在5G通信、新能源汽车、消费电子等工业应用中的发展及小型化、高耐电压性、高可靠性的技术发展趋势。
为实现锂氟化碳电池在更多领域的普遍应用, 以工业化碳材料(活性炭、球形石墨、膨胀石墨和工业石墨烯)为碳源, 制备了四种氟化碳正极材料。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、红外光谱(FTIR)、X射线能谱(XPS)、氮气吸脱附以及电化学测试等表征手段对材料的微观形貌、晶体结构、化学结构和电化学性能进行了系统的研究。研究表明: 氟化工业石墨烯具有完全的单氟化碳结构、高比表面积以及稳定的碳结构, 在20 mA·g-1的放电电流下可以实现高达945.4 mAh·g-1的比容量; 氟化活性炭具有较多的半共价C—F键, 其起始放电电压最高, 但是由于其结构稳定性较差, 电压平台快速下降, 导致整体比容量较低; 氟化膨胀石墨和氟化球形石墨与氟化工业石墨烯结构类似, 但是由于高氟化碳原子(CF2和CF3)的存在, 其放电比容量要低于氟化工业石墨烯。不过在高放电电流密度下, 氟化膨胀石墨、氟化球形石墨和氟化工业石墨烯的能量密度十分接近, 因此, 基于氟化膨胀石墨和氟化球形石墨的成本优势, 氟化膨胀石墨和氟化球形石墨更适合于高功率应用场景。
随着人们对锂离子电池需求的日益增加, 高能量密度和高功率密度锂离子电池技术成为研究热点之一。材料改性及新材料开发能有效提高电池的能量密度, 除此以外, 孔隙率、孔径大小与分布、曲折度及电极组分分布等电极的微观结构参数也是决定电极及电池性能的关键因素。通过优化电极结构设计提升高比能电池的性能逐渐成为人们关注的焦点。本文综述了锂离子电池多孔电极结构设计优化的研究进展, 总结了多孔电极结构设计要素及制备方法, 最后对电极结构设计优化以及推动新型制备技术的规模化应用在高比能锂离子电池领域的未来发展前景进行展望。
碳纳米管(CNTs)作为纳米材料研究中的一个重要发现,自其诞生以来就成为碳材料领域的研究热点之一。金属有机框架(MOFs)凭借其独特的多孔结构,近年来在各领域的应用已经成为研究前沿之一。随着材料科学的不断发展,对具有不同功能特性材料的复合技术研究,已经成为解决材料应用领域中关键问题的主要方法。而碳纳米管和金属有机框架作为目前材料领域两类十分重要的纳米材料,通过复合技术将碳纳米管的高导电特性和金属有机框架材料的高比表面积、丰富孔道分布特性相结合是研究与应用的必然趋势。本文综述了近年来金属有机框架和碳纳米管的主要复合形式和制备方法,整理了复合材料在超级电容器、锂电池、催化、吸附等领域的最新研究进展,对两种材料性能的协同提升方面进行了讨论和总结,并指出CNTs与MOFs材料的复合以及CNTs的生长分布具有很高的随机性,对其实现进一步控制是未来的技术研究重点。
为了充分利用纳米纤维膜的多孔特性,同时克服其低机械强度的缺陷,以聚丙烯腈(PAN)为主要原料,采用静电纺丝法在石墨电极表面制备PAN纳米纤维膜,形成隔膜-电极一体化结构单元(SAA),并对SAA的孔道结构、力学性能、电解液性能、热尺寸稳定性及电池性能进行系统研究。结果表明:SAA中PAN隔膜与石墨电极的粗糙表面结合紧密,PAN隔膜呈现出发达的孔道结构,电解液亲和性良好;在150℃热处理0.5 h,SAA表面隔膜的热收缩率小于2%,显著优于市售聚烯烃隔膜。基于良好的理化特性,SAA装配的钴酸锂全电池表现出优异的循环容量和倍率容量保持性,如在0.2 C下,经历200次循环后电池的放电容量保持率为98%,在32 C下电池的放电容量为0.5 C下的44.3%。因此,电极表面直接制备纳米纤维膜可形成完整的隔膜-电极一体化单元,在充分发挥纳米纤维膜优势的同时,可优化电极与隔膜的界面相容性、改善电池的充放电性能,并能够提高电池的装配效率。
富锂锰基正极材料作为极具潜力的下一代锂离子动力电池正极材料,在不同温度下电化学性能表现出很大差异,严重限制了其在实际环境中的应用。采用多种电化学测试表征了富锂锰基材料在5~45℃温度范围内电化学性能的差异,从极化的角度分析了材料性能与温度依赖关系的影响因素。结果表明:富锂锰基材料的充放电容量随着温度的降低而降低,主要源于高电压和低电压区间内氧/锰离子反应随温度降低极化显著增大,造成其贡献的容量显著降低。这主要是因为氧/锰离子本征动力学性能差使电荷转移过程具有较高的表观活化能。此外,氧/锰离子参与电荷补偿反应使材料结构发生较大变化,一方面诱发界面膜成分发生变化,增加了低电压区间界面锂离子传输表观活化能,另一方面造成充放电末期锂离子固相扩散具有较高的表观活化能。因此,改善富锂锰基材料氧/锰离子反应动力学是提高其环境适应性的主要措施。
新能源汽车行业的蓬勃发展对高性能锂离子电池需求越来越迫切。作为锂离子电池的重要组成部分,电极性能对于锂离子电池整体性能的影响十分显著。而在电极中,作为多组分混合物浆料的均匀性和稳定性对于电极片性能的影响巨大。但是目前研究者们的重点通常都是放在电极特性和电池组装工艺上,对决定电池性能浆料的特性研究较少。电极组分的均匀性是由浆料组分的均匀性和稳定性决定,而浆料是一种多组分悬浮颗粒组成的复杂体系,其均匀性和稳定性难以直接观测,浆料的流变性能是当前能反映浆料均匀性和稳定性的最有效的指标参数。本文阐述了近年来锂离子电池电极浆料制造过程中活性物质、黏结剂、导电剂、溶剂、分散添加剂、pH值、温度、混合步骤对浆料流变性能的影响,总结了这些因素对浆料流变性能的影响规律,为研制出更加均匀和稳定的浆料体系及高性能锂离子电池提供一定的指导作用。