本文综述了Inconel 625合金析出相的析出与演变行为,重点介绍了该合金不同类型析出相包括γ'相、γ″相、δ相、Ni2(Cr,Mo)相以及MC,M6C,M23C6型碳化物和Laves相;阐明不同成形工艺、热处理及高温蠕变过程中析出相的析出与演化行为,论述不同类型的析出相对合金性能的影响;指出Inconel 625合金快速成形及焊接过程中产生裂纹的主要因素,并提出未来重要的发展方向是如何通过选择与控制相析出来进一步提高Inconel 625合金的热强性和热疲劳性能。
GH4720Li高温合金因其具有良好的高温强度、抗疲劳和抗腐蚀性能以及长期组织稳定性,被广泛应用于高性能航空发动机涡轮盘等转动部件。本文归纳了GH4720Li高温合金中γ'相的作用机理和演变规律,并分析了γ'相与高温性能之间的关联性和γ'相与残余应力的交互影响规律。此外,还综述了GH4720Li高温合金的改型研究进展,展望了未来分区控冷技术和双组织双性能盘制备技术在高温合金中的应用。
镍基高温合金因其优异的高温强度及耐腐蚀、抗氧化性能而备受关注, 被广泛应用于航空航天等领域。本文对增材制造镍基高温合金的制备方法、常见牌号以及合金的组织与性能进行了综述, 总结了当前存在的问题, 提出了未来值得探索的研究领域。金属增材制造技术制备的镍基高温合金具有良好性能, 能实现复杂构件精密成形, 且制备过程中材料浪费少, 有望成为未来航空航天等领域中镍基高温合金构件的重要制备工艺。常见的镍基高温合金增材制造方法有粉末床熔化、定向能量沉积和电弧增材制造等, 粉末床熔化被广泛用于制造高精度和复杂零件, 但制造速度相对较慢, 且设备和材料成本较高。定向能量沉积自由度和灵活性更高, 可用于制备功能性梯度材料, 但精度较低。电弧增材制造具有较低的设备成本和材料成本, 适用于大型零件的快速制造, 但其制备的合金表面粗糙度较差, 需要进行额外的加工或后处理。在增材制造过程中被广泛研究的镍基高温合金包含IN625, Hastelloy X等固溶强化型和IN718, CM247LC, IN738LC等沉淀强化型高温合金。与传统的铸造和锻造方法相比, 增材制造独特的逐层成型、快冷快热的制备过程带来了粗大的柱状晶粒组织和大量细小晶粒的独特微观组织, 还形成了独特的熔池组织及位错胞结构。但是, 通过增材制造得到的合金一般还需要进行热处理, 对晶粒组织、析出相等进行调控, 从而影响合金的力学性能。此外, 增材制造镍基高温合金的力学性能还与具体制备方法和合金种类有关。尽管目前增材制造已被广泛用于镍基高温合金的制备, 但仍面临组织与性能存在各向异性、高性能合金开裂敏感性高以及缺乏相应的规范和标准等问题, 将来需要在热处理、专用合金的定制与开发、探索工艺-结构-功能关系以及计算建模等方面深入探索。
采用Gleeble-3800对一种新型变形高温合金材料GH4066进行热物理模拟测试,获得了该材料在温度为800,900,1000,1100,1150℃,应变速率为0.0003,0.001,0.01,0.1,1,10 s-1的不同变形工艺条件下高温流动应力特征。基于实验数据与唯象学模型,建立了该材料的本构关系模型;通过对不同温度、不同应变速率条件下的材料试样进行微观组织观察与晶粒尺寸测试,建立了材料的动态再结晶和晶粒长大模型;将材料本构关系、峰值应力应变、动态再结晶以及晶粒长大模型嵌入有限元软件中进行该材料涡轮盘锻造成形工艺的模拟计算,给出了该材料涡轮盘热锻造成形的合理参数范围。通过对材料模型的准确度验证,建立了一种综合实验与计算的材料模型构建及涡轮盘锻造工艺参数确定的方法。
采用双籽晶制备第二代镍基单晶高温合金DD5合金双晶试板并加工成力学试样,研究小角度晶界对DD5合金中、高温条件下拉伸、持久性能的影响。结果表明:在760℃拉伸条件下,晶界角度小于14.8°时,试样抗拉强度大于1100 MPa,伸长率大于8%,断面收缩率大于14%,晶界角度大于14.8°后,抗拉强度、伸长率以及断面收缩率随着晶界角度的增大而下降,屈服强度则没有显著变化;在980℃拉伸中,晶界角度小于19.4°时,试样抗拉强度大于760 MPa,屈服强度大于630 MPa,伸长率以及断面收缩率则随晶界角度的增大而快速下降,至19.4°时,伸长率下降至1.4%,断面收缩率下降至2.8%;在870℃/551 MPa持久条件下,当晶界角度小于7.8°时,试样持久寿命大于110 h,伸长率大于19.8%,断面收缩率大于23.1%,当晶界角度大于7.8°后,试样持久寿命、伸长率以及断面收缩率随晶界角度的增大而快速下降。
镍基铸造高温合金是航空发动机与燃气轮机生产制造过程中应用的主要材料之一,在航空航天、能源工业、船舶舰艇等领域有着广泛的应用。现代航空工业的飞速发展离不开高温合金综合性能的快速提升,而热等静压技术在镍基铸造高温合金领域的应用对镍基铸造高温合金综合性能的改进方面发挥了举足轻重的作用。本文介绍了热等静压技术的工作原理与应用发展历史,总结了热等静压技术在镍基铸造高温合金领域的研究应用现状,重点阐述了热等静压技术对铸造高温合金的致密化作用机理与组织性能影响、热等静压对长期服役镍基铸造高温合金组织修复研究以及实现两种镍基高温合金扩散连接的应用优势与研究成果。同时指出热等静压技术研究中存在的一些问题及国内热等静压技术在镍基铸造高温合金领域的发展趋势。
单晶高温合金涡轮转子叶片是航空发动机的核心热端部件之一,对航空发动机的推力和性能具有决定作用,其服役损伤增材修复技术是航空装备特种加工领域最具挑战的工作之一。本文系统梳理了航空发动机单晶高温合金涡轮转子叶片的增材修复工艺方法及其应用进展;针对单晶合金增材修复中易产生的热裂纹缺陷问题,从热裂纹形成机理、关键影响因素和控制措施等角度进行了归纳;总结了单晶合金增材修复组织及性能的研究进展。在此基础上,展望了单晶高温合金涡轮转子叶片增材修复的未来发展方向,指出单晶合金修复专用合金材料成分设计、新工艺开发和基于深度学习的多目标协同优化是此领域未来的重要研究方向。
采用高分辨透射X射线三维成像技术研究高速凝固法(high rate solidification,HRS)制备的3种成分复杂单晶铸件叶身和缘板部位的铸态显微孔洞分布情况。结果表明:凝固温度范围和枝晶排列曲折程度对孔洞的影响很大。铸件叶身部位,不同成分单晶的枝晶排列方式相同。其中,一代单晶的凝固温度范围最大,其孔洞体积分数也最大。二代单晶和三代单晶的凝固范围差异不大,孔洞体积分数主要受共晶体积分数的影响。随着单晶代次的增加,合金中难熔元素的含量将会增加,继而引起叶身部位共晶体积分数的增加。因此,合金最后凝固阶段枝晶间的空隙尺寸增加,液相压降降低,导致形成孔洞的体积分数减小。相比于叶身部位,缘板部位的孔洞主要由枝晶曲折程度决定。一代单晶缘板部位的枝晶曲折程度变化不明显,其孔洞体积分数与叶身部位的孔洞体积分数差异不大。二代单晶和三代单晶缘板部位的枝晶曲折程度逐渐增加,其孔洞体积分数增加。
为了研究检验腐蚀对一种镍基单晶高温合金高周疲劳性能的影响,将经过标准热处理的试样置于FeCl3+HCl+H2O腐蚀剂中分别腐蚀2次和4次,采用莱卡DCM8共聚焦显微镜和扫描电镜对未腐蚀、2次与4次腐蚀试样的表面形貌进行观察,然后分别测试未腐蚀和4次腐蚀试样760℃与980℃的旋转弯曲疲劳性能。结果表明:未腐蚀试样表面存在纵向且相互平行的由抛光带来的细小抛痕,表面粗糙度低;2次腐蚀后,表面抛痕有所减少,枝晶间区域出现腐蚀坑,表面粗糙度增加;4次腐蚀后,表面抛痕被完全腐蚀掉,腐蚀坑深度和表面粗糙度进一步增加。4次腐蚀会略微降低合金760℃的疲劳性能,但对高应力幅条件下的疲劳寿命影响较大,对低应力幅条件下的疲劳寿命影响较小。4次腐蚀对合金980℃疲劳性能影响很小。
利用Gleeble-3500D型热模拟实验机进行等温压缩实验,系统研究一种新型热挤压态Ni-Co-Cr基粉末高温合金在变形温度为1020~1110℃、应变速率为10-3~1 s-1条件下的热压缩变形行为,对获得的流变应力曲线进行摩擦修正,利用摩擦修正后的数据分别建立合金的热压缩本构关系方程和考虑应变补偿的流变应力模型;同时,构建热加工图,并结合显微组织分析,优化合金的热变形工艺参数。结果表明:合金在热压缩过程中发生了明显的动态再结晶现象,流变应力随应变速率的降低或变形温度的升高而降低。利用所建立的考虑应变补偿的合金流变应力模型进行流变应力的预测,其预测值与实验摩擦修正值吻合良好。根据构建的热加工图并结合微观组织分析,提出了合金较合理的热加工参数:变形温度约为1076~1103℃、应变速率约为10-3~10-2.77s-1。
采用不同的时效制度处理热等静压+挤压+等温锻造工艺的FGH95合金,并对处理后合金的显微组织和力学性能进行了系统研究。结果表明,经过双级时效(870℃/1 h,AC+650℃/24 h,AC)和单级时效(760℃/10 h,AC)处理后,合金的晶粒度无明显差异,但γ'相的数量、尺寸及分布存在显著差异。相比于单级时效,双级时效可以更有效地促进晶内γ'相粗化,晶内γ'相平均直径达到78 nm,而单级时效为67 nm;同时,双级时效更有利于M3B2等晶间强化相的析出。二者的拉伸强度水平相当,但双级时效合金的持久寿命低于单级时效合金,而其持久塑性要优于单级时效合金。
研究一种镍基第三代单晶(single crystal,SC)高温合金在760℃/800 MPa,980℃/250 MPa与1100℃/137 MPa条件下的横向持久性能。结果表明:在760℃/800 MPa,980℃/250 MPa与1100℃/137 MPa条件下,该合金横向持久寿命与伸长率均低于纵向;横向与纵向持久断裂后的位错组态特征一致,760℃/800 MPa条件下断裂后γ'相中存在相交的层错,而1100℃/137 MPa条件下断裂后γ/γ'相界面形成位错缠结与高密度位错网;横向与纵向在760℃/800 MPa条件下为类解理断裂与韧窝断裂的混合断裂,而在980℃/250 MPa与1100℃/137 MPa条件下为韧窝断裂;第一代单晶高温合金DD3、第二代单晶高温合金DD6与本研究的第三代单晶高温合金中高温横向持久断裂机制基本一致;外应力方向垂直于定向凝固过程形成的一次枝晶间界面,是横向持久性能低于纵向的主要原因。
为满足先进航空发动机发展需求,航空发动机涡轮叶片的结构日趋复杂,并且作为涡轮叶片首选材料的单晶高温合金中高熔点合金元素含量不断增加,由此导致单晶高温合金涡轮叶片制备过程中结晶缺陷形成倾向增大,直接影响单晶涡轮叶片的质量。本文以单晶高温合金定向凝固过程中出现的一种晶体缺陷——雀斑为讨论对象,综述了近年来雀斑形成机制、判据模型及其控制方法相关研究工作,分析了合金成分、叶片结构、定向凝固工艺和结晶取向对雀斑形成机制的影响,指出考虑不同合金体系中的合金元素与定向凝固过程的参数对雀斑形成的影响,进一步研究复杂结构单晶涡轮叶片雀斑形成规律,建立雀斑预测与控制的有效方法是未来的研究方向。
为研究高代单晶高温合金组织稳定性影响机制,制备含6%(质量分数,下同) Ru和4.5% Ru的两种单晶高温合金D1和D2,经完全热处理后在980℃下长期时效1000 h。观察不同尺度上的显微组织及合金元素分布,并结合热力学计算进行分析。结果表明:两种合金经完全热处理后仍有较高含量的高熔点合金元素偏析于枝晶干中,使枝晶干区域长期时效后均有较多TCP相析出;两种合金中,Ru和Re均为TCP相主要形成元素,Ru含量较高的D1合金中TCP相析出量多于Ru含量较低的D2合金;Ru和Re含量增加会使合金平均d轨道电子能级增大,增加合金TCP相析出倾向,但由于Ru可以降低Re在γ相中偏析程度,因此Ru含量增加又可以减少Re对合金组织稳定性的不良影响;在本研究中,Ru对TCP相析出的促进更为显著,因此,在980℃下长期时效1000 h后D1合金较D2合金析出更多TCP相。
镍基单晶高温合金因优异的高温力学性能而被广泛应用于航空发动机和地面燃气轮机的涡轮叶片等关键热端部件。Ru元素作为第四代、第五代镍基单晶高温合金的主要特征元素, 其添加对合金从凝固特性到最终的服役性能都起到关键的影响。本文从镍基单晶高温合金的凝固特性、凝固组织、TCP相析出及蠕变性能等方面出发, 综述了Ru元素对镍基单晶高温合金影响的研究进展, 系统分析了Ru的添加对合金凝固路径、凝固特征温度、微观偏析等凝固特性及共晶、碳化物等凝固组织的影响规律, 并重点探究了Ru的添加能抑制TCP相析出及提高合金蠕变性能的原因。目前由于多组元交互作用对组织与性能影响机理的复杂性, 使得含Ru高温合金的成分设计与优化具有更高的挑战, 建议未来含Ru高温合金的相关研究从富Ru新相的析出原因及抑制、Ru添加对凝固缺陷的影响及Ru与其他元素交互作用对"逆分配"效应及TCP相析出的影响机制等方面做进一步探究, 为发展新型高性能含Ru高温合金的设计提供思路。
采用涂盐法研究表面涂覆有90%(质量分数,下同)Na2SO4+10%NaCl混合盐(750 ℃熔融态)和纯Na2SO4盐(750 ℃固态)的第二代镍基单晶高温合金DD421在750 ℃大气环境下(无SOx气氛)的热腐蚀行为。结果表明:在熔融混合盐腐蚀介质中,硫化反应主要由液相熔融盐侵蚀所导致。热腐蚀100 h后合金腐蚀产物主要为典型的简单氧化物(Al2O3,Cr2O3,TiO2)以及Ni/Cr/Ti的硫化物。而在纯Na2SO4固态盐热腐蚀实验中,热腐蚀100 h后合金腐蚀产物与混合盐实验中的产物基本相同,但其腐蚀层厚度相对更薄,硫化物尺寸相对更大。结合热力学和微观组织分析,本研究明确了在无SOx气氛的腐蚀环境下合金元素能够与固态Na2SO4盐发生硫化反应。
采用螺旋选晶法制备DD6合金单晶试棒,标准热处理后在980 ℃长期时效2000 h,研究980 ℃长期时效对DD6单晶高温合金的组织演化及力学性能的影响。结果表明:随着长期时效时间的延长,合金中γ'相的尺寸增大,2000 h后γ'相尺寸约为1 μm,没有TCP相析出,合金具有较好的组织稳定性。2000 h长期时效试样在980 ℃/243 MPa下持久寿命为180.16 h,为热处理态的56.3%;在1070 ℃/130 MPa下持久寿命为144.42 h,为热处理态的35.31%,断裂模式均为微孔聚集型断裂;相比热处理态的合金,2000 h长期时效态试样760 ℃的抗拉强度和屈服强度分别降低5.55%和5.88%;980 ℃的抗拉强度和屈服强度分别下降11%和10.59%。
高焊接热裂纹敏感性是制约新一代合金材料在航空航天领域推广应用的技术瓶颈。本文分别从焊接热裂纹的产生机理和各类合金裂纹敏感性实验的角度梳理该方向的研究进展。焊接热裂纹主要包括凝固裂纹(在焊缝内部产生)和液化裂纹(在焊缝与部分熔化区交界处产生)。影响焊接热裂纹产生的因素包括材料成分、焊接热循环以及接头热应力。在梳理焊接热裂纹机理研究的基础上,分别总结了铝合金、镁合金、先进高强钢以及镍基合金焊接热裂纹的实验研究进展。建立考虑复杂多组元以及结晶形态对裂纹敏感性影响的量化判据,是该领域未来的重要发展方向。针对母材和焊材进行成分优化、添加形核剂或实施辅助工艺措施,是工程应用领域抑制热裂纹缺陷的有效方法。开展焊接热裂纹产生机理及其抑制方法研究,有助于突破新一代合金材料加工技术瓶颈,推进其在航空航天领域的应用。
利用透射电镜和场发射扫描电镜研究了两种不同Ru含量(3%和5%,质量分数)的第四代镍基单晶高温合金DD22在1130 ℃长期时效过程中γ′相形貌演化、TCP相析出和界面位错网的演化情况。研究结果表明:在完全热处理后5Ru合金比3Ru合金的γ′相尺寸更小,形状更规则,γ/γ′相界面的错配度更大,高Ru含量使合金Re,Mo等元素出现反分配现象;5Ru合金在1130 ℃长期时效过程中γ′相粗化速率、溶解速率和形筏速率均低于3Ru合金;5Ru合金在长期时效1000 h后仍没有TCP相析出,而3Ru合金在时效50 h后便析出TCP相,随着长期时效时间延长,TCP相数量增多,尺寸增大;与3Ru合金相比,长期时效1000 h后5Ru合金γ′/γ界面位错网更加致密和规则;综上所述,Ru的元素反分配作用和低的扩散系数使5Ru合金比3Ru合金表现出更高的组织稳定性。
采用激光选区熔化成形(selective laser melting, SLM)技术制备TCGH(TC4+GH4169)复合材料, 探究TCGH钛合金复合材料的最佳成形工艺参数, 并研究沉积态试样和热处理试样的显微组织与力学性能。结果表明:TCGH钛合金复合材料的最佳工艺参数为扫描速率900 mm/s、激光功率150 W, 致密度达到99.5%以上。GH4169粉末的添加改变了TC4钛合金材料的固态相变行为, 沉积态组织呈现明显高温凝固特征, 使得逐行扫描搭接和逐层扫描堆积成形特征变得明显, 沿打印方向原始粗大柱状β晶粒尺寸明显减小, 复合材料抗拉强度提升。与沉积态试样相比, 950 ℃热处理后, 试样显微组织转变为近等轴组织, 同时随着热处理温度上升, 第二相的回溶导致复合材料的固溶强化作用占主导地位, 使得复合材料抗拉强度和塑性均得到提升。
高温合金具有优良的综合性能,是航空发动机高性能构件的首选材料。由于高温合金带材屈服强度高、壁厚超薄、回弹明显、构件成形精度难以控制,因此研究现有循环本构模型对于高温合金带材变形预测的适用性具有重要意义。基于循环剪切实验,研究了不同循环塑性本构模型(Armstrong-Frederick(A-F)模型、Yoshida-Uemori(Y-U)模型和the anisotropic nonlinear kinematic(ANK)模型)对高温合金超薄带材循环塑性变形响应的表征效果。同时,通过U形弯实验和有限元仿真结果的对比,分析了不同屈服准则(Hill48,Barlat89和YLD2000-2d)结合不同循环塑性模型对于回弹预测的影响。结果表明,采用Y-U模型对高温合金超薄板循环塑性变形行为的表征能力最好,A-F和ANK模型次之。采用Y-U模型对回弹的预测精度高于各向同性模型和A-F模型,而屈服准则对回弹预测精度的影响不大,采用基于Hill48和YLD2000-2d屈服准则的Y-U模型,回弹预测误差可以控制在5%以内。
选择激光选区熔化(selective laser melting, SLM)工艺中不同激光功率和扫描速度的参数组合制备GH3536高温合金试样,采用μCT技术表征试样内部的孔隙率及缺陷特征,同时采用光学显微镜和扫描电镜验证缺陷类型,并分析熔池形貌。结果表明:SLM工艺参数与合金中缺陷特征和熔池形貌密切相关,优化参数组合时连续性熔池具有较大的长宽比、彼此搭接良好,同时成形试样的孔隙率远低于0.01%,存在随机分布、尺寸较小的气孔;偏离优化参数组合时不仅在间断性熔池界面形成了尺寸较大的孔洞,而且增加了SLM成形过程的不稳定性,形成了少量的未熔合,这两类缺陷均具有一定的各向异性;试样中还存在未能被μCT发现的微气孔和微裂纹。
为研究舰载航空发动机关键部件的氧化腐蚀防护, 开展镍基粉末高温合金FGH4095和FGH4096在750~1100 ℃空气环境中的高温氧化实验, 采用静态增重法测定两种合金在不同温度下的氧化动力学曲线, 利用金相显微镜、扫描电子显微镜、电子探针分析仪和X射线衍射仪对合金试样表面与截面氧化层的形貌、结构以及组成进行观察和分析。结果表明: FGH4095和FGH4096两种合金在750~900 ℃时属于完全抗氧化级, 在1000~1100 ℃时属于抗氧化级, 而两种合金的实际服役温度在900 ℃以下, 所以在其工作温度范围内抗氧化性能优异。在750~900 ℃时, 两种合金的抗氧化性能相近, 无明显差别, 氧化膜均未发生剥落。高温氧化后, FGH4095和FGH4096的氧化膜分为两层, 内层都是以Al2O3为主, FGH4095的外层由Cr2O3, Nb2O5和TiO2组成, 而FGH4096的外层仅为Cr2O3和TiO2。在1100 ℃时, 两种合金都发生明显氧化, 大量氧化皮破裂, 由于合金成分不同, 此温度下两种合金的抗氧化性能差别较大, 相比之下FGH4095合金具有更好的抗氧化性能。
采用两种热输入不同的焊接工艺参数对3 mm壁厚的Inconel 617镍基高温合金进行激光焊接。通过光学显微镜和扫描电子显微镜对焊接接头显微组织进行观察分析,并测试了焊接接头在室温(25℃)及高温(900℃)下的拉伸性能。结果表明:激光焊接热输入对Inconel 617焊接接头显微组织及力学性能影响明显。在高热输入(200 J/mm)条件下,焊缝正面宽度3.88 mm,熔化区中部晶粒尺寸粗大,取向杂乱,树枝晶二次枝晶间距较大(6.71 μm),枝晶间碳化物颗粒尺寸较为粗大,枝晶间Mo,Cr等合金元素的凝固偏析较为严重。焊接接头热影响区宽度约0.29 mm,在晶界和晶内形成了γ+碳化物共晶组织,这是由于焊接升温过程中,热影响区内球状碳化物颗粒与周边奥氏体发生组分液化,并在焊后凝固过程中形成共晶。低热输入(90 J/mm)工艺参数获得的焊缝正面宽度为2.28 mm,焊缝呈沿熔合线母材外延生长并沿热流方向定向凝固形成的柱状晶形态。焊缝中部树枝晶二次枝晶间距较小(2.26 μm),枝晶间碳化物颗粒尺寸细小,热影响区宽度约0.15 mm。室温(25℃)拉伸测试表明:高热输入下获得的焊接接头由于焊缝中固溶元素偏析造成的局部组织弱化,从焊缝中部破坏,强度与伸长率有所降低,低热输入条件下获得的焊接接头从母材破坏。而高温实验条件下(900℃),母材晶界发生弱化导致所有试样均从母材破坏。
采用FESEM和TEM研究二次γ'相演化对DD6单晶高温合金760℃/785 MPa和980℃/250 MPa蠕变性能的影响。结果表明:标准热处理的DD6合金经1120℃/4 h/AC处理,基体通道内析出二次γ'相。760℃/785 MPa蠕变时,基体通道内的二次γ'相在蠕变初期阻碍a/2〈011〉位错在基体通道内运动,促进{111}〈112〉滑移在一次γ'相开动,从而缩短孕育期时间,显著增加蠕变第一阶段应变和蠕变速率。980℃/250 MPa蠕变时,基体通道内的二次γ'相在蠕变初期快速回溶,二次γ'相对980℃/250 MPa蠕变行为基本没有影响。
为研究温度对刚玉基耐火材料组织和微粒脱落的影响,对粉末冶金高温合金粉末制备用刚玉基(Al2O3)耐火材料进行950~1350 ℃不同温度保温60 min处理。采用XRD分析热处理前后耐火材料的结构,采用扫描电镜对各样品进行微观形貌观察和微区成分测定,并用黏附实验评价不同温度处理后耐火材料颗粒脱落性的改善情况,探索加热保温处理对减少颗粒脱落的机理。采用热冲击测试评价不同温度处理后耐火材料耐热冲击性,并测试耐火材料的显气孔率与体积密度。结果表明:随着加热温度升高,耐火材料中的铝酸钙黏结剂成分将逐步从CaAl2O4(CA)转化为CaAl4O7(CA2),一方面耐火材料中细小的陶瓷颗粒逐步烧结在一起,直至形成相互连接的稳定网状结构;另一方面逐步在大颗粒骨料上润湿铺展并相互连接,最后形成对大颗粒的包覆,同时耐火材料微粒黏附力将随着加热温度的升高逐渐增强。采用预热处理对于耐火材料的显气孔率、体积密度以及整体的耐热冲击性影响不大,但是随着温度升高,对于耐火材料表面在热冲击测试中的局部脱落程度和质量损失率有较明显改善。在保温60 min的条件下,加热温度在1150~1350 ℃时微粒脱落明显减少,其中1250~1350 ℃为较优预热温度段。
针对新一代航空发动机涡轮盘用超低C,N含量的变形高温合金GH4065A,系统表征和定量统计了合金的夹杂物组织。对细晶态和粗晶态试样开展了400 ℃和650 ℃不同载荷水平下的疲劳实验。通过对疲劳断裂源组织进行表征分析,研究了合金的疲劳断裂机制。结果表明,合金的夹杂物主要为氮化物。在细晶组织状态下,高温疲劳断裂机制为氮化物(单独和团簇态)起始断裂。高应变幅载荷下(≥0.9%),断裂源主要为试样表面氮化物,极少情况为表面硼化物和氧化物(Al2O3和MgSiO3),且只有Al2O3导致合金过早疲劳断裂;低应变幅载荷下(<0.9%),断裂源为氮化物-解理面型,均在试样近表面/内部。两种不同的断裂方式分别导致高应变幅载荷下400 ℃疲劳寿命高于650 ℃疲劳寿命,低应变幅载荷下反之。统计发现,引起疲劳断裂的所有氮化物的尺寸全部达到/超过细晶组织平均晶粒尺寸。在粗晶组织状态下,400 ℃下疲劳断裂机制为准解理起始断裂。晶粒尺寸的增加极大降低了可能诱发疲劳开裂的夹杂物的有效数量,滑移诱发的解理断裂成为主导断裂机制。
为了研究1500℃和1540℃两种型壳温度对第三代单晶高温合金DD9叶片截面凝固组织的影响,采用光学显微镜、扫描电子显微镜对叶片典型截面凝固组织进行分析。结果表明:随着型壳温度的增加,DD9单晶涡轮叶片凝固组织的枝晶花样呈细小趋势,二次枝晶呈发达趋势。相同型壳温度下,叶片叶身部位的枝晶比榫头部位的枝晶更细小。随着型壳温度的增加,枝晶干和枝晶间的γ'析出相尺寸和分散度均减小,并且γ'析出相尺寸分布遵循正态分布规律。相较枝晶间区域,枝晶干区域的γ'析出相的平均尺寸减小了61%。相同型壳温度下,叶片叶身部位的γ'析出相尺寸比榫头部位的γ'析出相尺寸更细小。与截面积变小相比,提高型壳温度会使γ'析出相变小更显著。随着型壳温度的增加,γ-γ'共晶尺寸和含量减小,γ-γ'共晶组织呈葵花状和光板状两种形貌特征。
激光熔化沉积相比传统的氩弧焊、微束等离子弧焊更适用于单晶合金薄壁基体的修复。采用激光熔化沉积技术进行DD6单晶高温合金的增材修复。利用光学显微镜、扫描电镜与EBSD分析增材修复接头的修复区与热影响区组织特征,并测试修复接头的显微硬度分布与高温拉伸性能。结果表明:紧邻修复界面基体热影响区的γ′相发生了部分粗化与溶解,硬度明显降低。激光熔化沉积修复组织为外延生长的定向柱晶组织,由γ+γ′相以及枝晶间的少量弥散分布的碳化物组成,修复组织中存在低倍可见的细长柱状杂向晶,多数分布于紧邻界面的位置;随着修复区高度的增加,外延生长组织的枝晶间距与硬度随着修复高度的增加而逐渐增大,枝晶中细小的网格状γ′ 相占比不断增加;修复接头980 ℃抗拉强度达到了母材标准值的102%,屈服强度达到了母材标准值的92%,但伸长率相对较弱。
采用热力学计算与机器学习相结合的方法进行镍基高温合金面向热力学性能要求的逆向设计。结果表明:通过高通量热力学计算成功构建镍基高温合金热力学计算数据集,为采用机器学习方法实现面向热力学性能要求的镍基高温合金逆向设计提供数据基础。针对热力学目标性能建立若干C2P模型,模型精度均高于99%。采用MLDS方法进行合金成分逆向设计,推荐的8种合金均满足性能的要求(1100 ℃下的γ'相体积分数V γ',1100 ℃≥60%,V γ,1100 ℃+V γ',1100 ℃≥99%,γ'相熔点T γ′≥1300 ℃)。热力学性能预测误差最小的3种合金实验验证表明,V γ',1100 ℃均大于80%,时效后的组织中V γ,1100 ℃+V γ',1100 ℃≥99%,且T γ′≥1300 ℃,均满足设计的要求。
由SiCf/SiC复合材料与K403镍基高温合金熔体制备的一体化铸件, 冷却到室温时会出现自行断裂。通过采用Ti粉埋覆包渗工艺在1100 ℃下对SiCf/SiC表面进行预处理, 并在适当工艺下与K403镍基高温合金熔体进行陶瓷型精密铸造, 成功实现SiCf/SiC与K403镍基高温合金的一体化成形和界面的牢固结合。结果表明:Ti预处理层平均厚度为17 μm左右, Ti向SiCf/SiC渗透、扩散和反应, 形成含TiC, Ti3SiC2, Ti5Si3Cx, SiC相的显微组织;经过与高温镍基金属液复合铸造后, 预处理层演变成厚约120 μm的界面反应层, 其典型界面组织为Ni2Si+C+Al4C3+ MC(M主要含Ti及少量的Cr, Mo, W)。预处理层的存在减轻Ni与SiC的有害石墨化反应, 缓解高温金属液对SiCf/SiC的热冲击, 形成的界面反应层降低热膨胀系数失配造成的热应力, 使得SiCf/SiC与K403一体化铸件结合界面的室温剪切强度达到63.5 MPa。
采用光学显微镜、扫描电子显微镜和透射电子显微镜等研究固溶温度和时效时间对Inconel 617高温合金微观组织与力学性能的影响。结果表明:Inconel 617合金固溶态组织中主要析出相为M 23C6型碳化物,且优先于晶界处形核长大;随着固溶温度的升高,晶界及晶内碳化物经历先长大后溶解两个过程,合金平均晶粒尺寸生长速率提高。随着时效时间的延长,γ′相弥散析出且均匀分布于组织中,呈现数量减少、尺寸增大的趋势。γ′相尺寸增大,其晶格错配度随之增大,γ′相周围的弹性应变场增强,强化效果更加明显。高温拉伸性能测试表明:随固溶温度的升高,Inconel 617合金在750 ℃时抗拉强度和屈服强度逐渐降低,而在900 ℃时抗拉强度和屈服强度逐渐提高。在≤750 ℃时Inconel 617合金晶界强度高于晶内强度,而在900 ℃时晶内强度则高于晶界强度。随时效时间的延长,Inconel 617合金在750 ℃时抗拉强度和屈服强度逐渐提高。
采用金相显微镜和场发射扫描电子显微镜(FE-SEM)研究不同固溶温度(1140, 1160 ℃及1180 ℃)及固溶冷却方式(AC, FC-900 ℃+AC, FC)等热处理参数对K439B合金显微组织及力学性能的影响。结果表明:提高固溶温度后合金的光学组织及γ′相形貌接近, 晶界宽度略有增加。当以AC方式冷却时, γ′相均匀分布, 尺寸为50.7 nm;以FC-900 ℃+AC方式冷却时, 枝晶间及晶界附近析出250~510 nm的粗大γ′相, γ′相呈双态形貌;以FC方式冷却时, 粗大γ′相的含量增多, 且晶界颗粒状M23C6碳化物含量有所提高。降低冷却速率后K439B合金的815 ℃/379 MPa持久寿命得到较大改善, 不同固溶参数对热处理K439B合金的室温拉伸性能影响较小。
以单晶高温合金CMSX-4和DD5为研究对象,设计并制备了一种含5级平台的单晶试板铸件,选取晶体取向基本相同的铸件研究其在经1300 ℃/2 h和1310 ℃/4 h两种固溶热处理后的再结晶行为。结果表明:CMSX-4比DD5具有更强的再结晶倾向。经1300 ℃固溶热处理后,CMSX-4单晶试板在第2~5级平台下端转角处均出现了再结晶现象,且随着固溶热处理温度的升高,再结晶的面积越大。而DD5单晶试板经1300 ℃固溶热处理后并未出现再结晶现象,当固溶温度升至1310 ℃时,仅在第4级外侧平台发现了较小面积的再结晶。铸态和固溶热处理态的CMSX-4合金显微缩孔和共晶组织含量均大于DD5合金。更高含量的共晶组织和显微缩孔为CMSX-4铸件提供了更多的再结晶形核位置和数量,而高于γ′相溶解温度的固溶热处理减弱了粗大γ′相对再结晶长大的钉扎阻碍作用,高熔点的碳化物以及残余共晶成为阻碍再结晶长大的重要影响因素。此外,高含量的Co元素降低了CMSX-4合金的层错能,使其表现出更高的再结晶倾向。
采用光学显微镜、场发射扫描电子显微镜、电子探针仪研究第三代单晶高温合金DD9不同试样(双层壁超冷涡轮叶片、复合气冷涡轮叶片、精铸薄壁试样以及圆柱试棒)的显微组织及其薄壁效应。结果表明:四种试样的显微组织均存在差异。截面尺寸相同时,DD9单晶涡轮叶片的铸态一次枝晶间距、γ′相尺寸及铸态与热处理态试样枝晶偏析均大于精铸薄壁试样;完全热处理后,截面尺寸相同的单晶涡轮叶片与精铸薄壁试样的γ′相尺寸相近。随截面尺寸减小,DD9合金薄壁试样铸态一次枝晶间距、铸态与热处理态γ′相尺寸及枝晶偏析均呈减小趋势。
目前,二代及更高级单晶涡轮叶片的表面服役温度已达到1050 ℃以上,因此涂层与基体间的元素互扩散十分严重。互扩散不仅会消耗涂层中的有益元素,降低涂层服役寿命,而且会在单晶基体中形成二次反应区,严重损害单晶基体的力学性能。扩散障和低互扩散性涂层是控制热障涂层与单晶基体间元素互扩散的有效方法。结合国内外最新研究进展,本文首先对扩散障的设计原理、基本特性以及分类作简要介绍,并具体分析了金属扩散障、陶瓷扩散障和活性扩散障存在的主要问题以及针对这些问题开展的相关研究工作;其次,对低互扩散性涂层在热障涂层领域中的应用与最新发展动态进行综述,详细讨论了纳米晶涂层、相平衡涂层和γ′基涂层的高温防护性能和阻扩散机制。在此基础上,指出了扩散障和低互扩散性涂层的未来发展方向。
针对Ni3Al基定向凝固高温合金IC10导向叶片长时服役后出现的烧蚀、裂纹等损伤,可采用钎焊修复技术修复这些损伤缺陷,缩短大修周期。采用自主设计的高性能钴基钎料CoCrNi(W,Al,Ti,Mo,Ta)-B对IC10合金进行钎焊连接。在1220 ℃钎焊温度下,研究不同预置钎焊间隙和保温时间对IC10合金接头组织和强度的影响。结果表明:钎料对IC10合金具有良好的钎焊性,钎焊过程中钎料合金与IC10母材发生反应及互扩散,使得钎缝宽度比预置间隙明显增大。钎缝基体形成与IC10母材相类似的γ+γ′双相组织,同时基体上分布着团簇状硼化物相。保温时间对接头组织和强度影响较小,而钎焊间隙对其影响显著,随预置钎焊间隙增大,接头强度不断提高,当预置钎焊间隙为0.15 mm时,接头在1000 ℃下的平均抗拉强度达到454 MPa,已接近IC10母材水平。从接头断口形貌分析,接头强度的提高主要归因于接头中白色硼化物相细小且弥散分布,裂纹扩展路径更曲折。
采用扫描电镜、透射电镜和能谱技术, 详细分析DZ125和DZ22镍基高温合金中富Hf夹杂物的形貌、结构及成分, 开展不同Hf添加量的镍基合金凝固组织特征的模拟实验探究, 阐明Hf夹杂物的形成机理。结果表明: DZ125和DZ22合金铸件的边缘均存在不规则形态的夹杂物, 其中白亮夹杂物为HfO2, 与之伴生的灰色夹杂物中含有Al2O3。镍基高温合金中的Hf元素聚集倾向强, Hf含量较高时可形成百微米以上的大尺寸富Hf相, 随着Hf含量降低, 富Hf相减小且分布更为均匀。高温下Hf与熔体中的氧、陶瓷型壳/型芯氧化物具有高的自发反应驱动力, 当Hf分散不充分时, Hf倾向于向氧化物陶瓷相/熔体的界面聚集, 在高温下与陶瓷中的Al2O3和硅溶胶黏结剂中的SiO2发生反应, 从而导致铸件表层HfO2夹杂物的形成。
瞬间液相(transient liquid phase, TLP)连接是目前用于连接镍基高温合金的一种优化技术,而连接后热处理(post-bond heat treatment,PBHT)是对连接后的接头进行的热处理工艺,本文对TLP连接中热循环对镍基高温合金母材组织性能的不利影响和TLP连接后接头存在的有害问题进行归纳汇总,对PBHT工艺的机理、种类及研究现状等进行详细分析,对其适用体系和效果进行系统评述。针对未来的PBHT工艺研究,建议继续向多级多道精准热处理的方向发展,并探索TLPB-PBHT一体化工艺。
以单晶高温合金CMSX-4为研究对象, 设计制备一种含5层平台的单晶试板铸件, 研究其在不同温度下进行固溶热处理后的再结晶行为。结果表明: 经固溶热处理后除最下层平台外, 其余每层平台的截面突变处均有再结晶产生, 再结晶面积随平台所处高度的增加先增大后减小; 铸件外侧平台比内侧平台更容易产生再结晶。固溶热处理温度TH对铸件平台再结晶形核和长大的影响非常显著, 当TH从1303 ℃提升到1315 ℃时, 再结晶面积从9.7 mm2增加到293 mm2, 增幅高达30倍。由于截面突变, 铸件平台部位会在凝固及冷却过程中产生较大的塑性变形并积聚大量的变形能, 在后续热处理时截面突变处易成为再结晶的起源; 同时, 因凝固过程中换热条件、冷却速率和变形速率的差异, 导致铸件各部位的应力分布不均, 在固溶热处理后表现出不同的再结晶行为。此外, 提高TH能够有效促进γ/γ'共晶组织和粗大γ'相的溶解, 减少γ/γ'共晶组织及粗大γ'相对再结晶晶界迁移过程中的钉扎作用, 显著增加再结晶缺陷区域。